COMPSCI-603: Robotics

Kalman Filter for State Estimation

Partial slide courtesy by K. Kitani and C. Stachniss

Kalman Filter

Chapter 3.2, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.

Kalman Filter

e Kalman filter is a Bayes filter for the linear Gaussian case.

* It performs recursive state estimation.
= Prediction/estimation step exploits the motion/control/action.
= Update/correction step exploits the observation/sensing/observation.

Kalman Filter

/) b ° / ‘ N
|| f.-’ |. .'l
I \, /
True Path N
Time

How NASA used the Kalman Filter in the Apollo Program: https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program 4

https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program

Kalman Filter Example

Bayes Filter and Kalman Filter

e Bayes filter is a mathematical tool for state estimation:
= Prediction/estimation:

@(ift) = /p(fl?t | ug, 1) bel(xy—1) dag o

= Correction/update:

bel(x¢) = n p(z | @) bel(xt)

* Kalman filter is an estimator for the linear Gaussian case.
* It is an optimal solution for linear models with Gaussian distributions.

1D Example of Kalman Filter

Motion Model

know velocity

Motion Xy = XT4+_1 T+ S+ T¢

Tt NN(O,O'R)

Motion Model

Tt =Tt—1+ S+t

ry ~ N(O'J UR)
—_—
S r2
know velocity noise

* How can we represent the motion model P(xs|x;_1)?

e |t is a linear Gaussian model.

P(Cﬁt\ﬂft—l) — N(iﬁt;iﬁ‘t—l + S,Ufr-)

Mean Standard Deviation

Motion Model

Visualization of this
distribution from ?
motion model: .

Tt =Tt—1+ S+t

ry ~ N(O'J C"'-R)
e ——
S r2
know velocity noise

10

Sensor Model

Sensing <t — ¢ —|— d¢ dg GPS

qr ~~ N(Oa OQ)
a —
* How to represent the sensor / | q1
observation model? —

error
GPS measurement Zl £E1 True position

e |t is also a linear Gaussian model:

P(Zt‘ﬂft) — N(Zt;llft,O'Q)

11

Sensor Model

e VVisualization of the sensor model:

dg.. GPS

GPS measurement Zl

2t = Tt T Q¢

True position

12

Prior State Distribution

e Prior state distribution is assumed to be a linear Gaussian model:

A
initial estimate ':EO

true position Initial estimate

true position

initial estimate uncertainty (O () P(C%O) — N(:ﬁ'o, X0, O'O)

The 'cap’ notation denotes 'estimate’ 13

Prediction/Estimation

e How can we predict 21 given 2 ?

* Prediction/Estimation: We use the prediction step to estimate the

belief using the motion model

Bel(a) = [pla | wesior) belli-r) dai

531 5&0

Mean of the new estimate: i‘l — Z/f)o
2

S

Variance of the new estimate: o1 = (78 —+ O'?

https://mathworld.wolfram.com

/Convolution.html

14

https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/Convolution.html

Correction/Update

* How can we update the estimated belief?
» Correction/Update: We use the ?‘,\
sensor model to update the

estimated belief.

¥

/a8

: 7“ l-'
l.
i -

-

/.
|»
| ——

* Given the uncertainty (encoded

by the variance) of the prediction initial system sensor
and sensor estimate WhICh one estimate prediction estimate
)
should we trust more? Lo T 21
* How to merge the information? e 02

uncertainty uncertainty

15

Correction/Update

* Intuitively, the smaller variance
means less uncertainty, so that we
can trust it more.

* Thus, we want a weighted state
estimate correction.

* Something like this:

system
prediction

oy

2 2
o1 + 0

2

01

<1

Sensor
estimate

O

2
q

16

Correction/Update

* This happens naturally in the Bayes filtering (with Gaussians) framework:

bel{zi) = n p(2¢ | T bel(z;)

mean: 23 mean: I
variance: oy variance: o1
new mean: 72 5 new variance: 2 9
4+ T104 + 2109 o1 0407
b1 = 2 2 o1 = 2 € 0.2
O, T 07 7 1

‘plus’ sign denotes post ‘update’ estimate (posterior)
17

Correction/Update

* As a recall from a math class...

a1 e

o () = e 27y
lEj HEEEE?

1 _f.'.—y:;'-":"

o (t) £ e 27
-V'ETTL'FE

I

i1 i3
2aZ T g2

1 4 1
Qa% EEE

o L2 D
oroz =

18

Correction/Update

system 2 sensor 2

prediction 01 estimate Jq

* With a little algebra, we get a weighted state estimate correction:

1102 + 2107 o2 o2

"‘|‘ . q - q | 1
b1 = 2 | 2 — 11 2_|_ 2 ~ <1 2_|_ 2
O'q 07 O'q 07 O'q 07

19

Kalman Gain

* With more algebra, we can rewrite the new mean and variance as:

2
o
T =1 521 —21) = 21 + K(2z1 — 1)
2
o + 07 / .&
q
Kalman gain Innovation
2 2 2
o570 o
1
o1 + 0, o1 t+0g

20

Moving to General Kalman Filter

* Everything is multi-variant Gaussian:

p(z) = det(27r2)_% exp (— %(m — U

34.19%9 34.1%

0.0 0.1 02 03 04

-30 -—20 -1lo M lo 20 30

)8 @ —)

Courtesy: K. Arras

21

Linear Models for Kalman Filter

e Kalman filter assumes linear models for motions and observations.
flz)=Ax+1b
e Kalman filter assumes zero mean Gaussian noise in the linear models:
T = Axi_1 + Brug + €4
2y = Crxy + 04

22

Linear Gaussian Motion Model

* We can represent the linear motion model

Ty = A1 + Brug + €
as a Gaussian probability distribution for the Bayes filter framework:
1)
p(xs | ug, x4—1) = det (2w R;) ™ 2

1 1
eXp <—§(37t o o R Btut)TRt 1(5171& o (Ve el e Btut))

where [B; is covariance that encodes the noise of the motion.

23

Linear Gaussian Sensor Model

* We can also represent the linear sensor model
zt = Cyxy + 0y
as a Gaussian probability distribution for the Bayes filter framework:

p(z | x¢) = det(?th)_%
1

exp (—5(2& — Cyxe) Q7 M (2 — Cﬂt))

where ()); is covariance that encodes the noise of the sensor.

24

General Kalman Filter Variables

« A, : Matrix (n X n) that describes how the state evolves from t — 1
to t without control or noise.

« B;:Matrix (n x 1) that describes how the control u, changes the
state fromt — 1 to t.

» (U4: Matrix (k X n) that describes how to map/project the state x;
to an observation z;.

e €+ and 575 : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed
with covariance R; and ();respectively.

25

General Kalman Filter Algorithm

KalmanFilter(ut_l, Zt—l; Uy, Zt)

Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the
state fromt — 1 to t.

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed
with covariance R; and (Q;respectively.

26

Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the

General Kalman Filter Algorithm < =

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed

KalmanFllt cr (/,Lt —1, 21’: —1, ut : Zt) with covariance I?; and ();respectively.

motion control

pr;d;ztri]on l/llt — At l’l/t— 1 —I— But ‘old” mean

— ‘old’ covariance Pred lCtl On (S“de 23)
cpg\?:!izt;%l Zt At Zt—lA;— _I_ R Gaussian noise ,’L’t BISEL Atmt—l _I_ Btut _I_ Et

27

Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the

General Kalman Filter Algorithm < =

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed

KalmanFilt er (/’Lt— 1 : Zt— 1 ; ut : Z'[;) with covariance R; and (Q;respectively.

motion control

pr;d;ztri]on ﬁt — At l’l/t— 1 —I— But ‘old” mean

—_ ‘old’ covariance Pred lCtl On (S“de 23)
C%fg&;g; Zt At Zt—lA;— _I_ R Gaussian noise ,’L’t BISEL Atxt—l _I_ Btut _I_ Et

Ky = E{;CtT(CtZtCtT + Q)71 Gain st-ae g —n ke

q 1
(Slide 20, 2 2 2
. 010 o
1D) of = o =(1-—=- i=01-K)o?
In) 0q U%+02 < 0-%—1_03) 01 ()01

28

Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the

General Kalman Filter Algorithm < =

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed

KalmanFilt er (/’Lt— 1 : Zt— 1 ; ut : Z'[;) with covariance R; and (Q;respectively.

motion control
prediction 11 — A _I_ Bu S
mean _ 1 . .
lft tfit ! Prediction (side 23)
gfii?ﬁl Et At Zt L 1 A;— _I_ R Gaussian noise ,’L’t e Atxt— 1 _|_ Btut _I_ Et

Kt p— EtCt—r(Cttht—r —I— Qt)—l Galﬂ :?:{F::%1+02(f0%(z1—:?;1)::f:1+K(21—£1)

observation model (Slide 20, 0%02 o2
update —_— 711 g-g C 'y in 1D) 01+202+((]72:< _02_:02>‘7%:<1_K)0%
 — — 1 1
mean Mt Mt t Zt t l,Lt q q

~ Update siide24)
(I o KtCt)Zt St — Otﬂft iin (St

update E
covariance t

Mt is the mean and }.; is the covariance of the distribution of X'¢
29

2D Example of Kalman Filter

A=

> L
state measurement

;] -l

Constant position Motion Model

x
Y

x
Y

Ly — ACBt_l + B’U;t + €4
system noise

€t NN(O,R)

Constant position
I O

O 1 Bu:

30

2D Example of Kalman Filter

» U
state measurement

=

Measurement Model

<1 = CtCCt -+ 6t

Zero-mean measurement noise

31

2D Example of Kalman Filter

* To track the robot (with a0 c—| 10
constant position): 0 1 0 1
motion model observation model
General Case Constant position Model
fir = Appie—1 + Buy Ty = Typ_1
it = AtEt_lA;r + R Z_t — Et—l —|— R
K; = %:C, (Cy2:C) + Q)™ K; = St(it - Q)_l
py = iy + Ky (2 - Ctfit) xy = Xy + Ki (20 — X4)
i = (1= KoC) 2 2 = (I — Kt)jt

32

Extended Kalman Filter (EKF)

Chapter 3.3, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.

33

Motivation of EKF

e Motion model of the
basic Kalman filter
must be linear.

vy = Axi_1 + Bus + €

Output:
Gaussian (Prediction)

p(‘ﬂ?t)

p(:}:t_l) A

T
Input:
Gaussian (Belief)
34

Motivation

* But motion is not
always linear; actually,

In most cases, it is Output:
nonlinear. NOT
Gaussian

e Can we use the Kalman
Filter with nonlinear
motion models?

e How to deal with non-linear models?

Lt

p(’xt)

P(It—ﬂ |

Ti—1

Input:
Gaussian (Belief)

35

Extended Kalman Filter

e Uses local linearization
(linear approximations) of
model to keep the
effectiveness of the KF
framework.

e EKF does not assume
linear models.

* |t assumes Gaussian noise.

Qutput:
Gaussian

It

p("rt)

P(-’ﬂt—l) 1

Tt_1

Input:
Gaussian

36

Extended Kalman Filter

Kalman Filter Extended Kalman Filter

linear motion model

xy = Axi_1 + Bus + ¢

37

Motion Model Linearization

0 _1,U
g(xe_1,us) =~ g(pe—1,us) g(g;t 11 2 (Tt—1 — pe—1)

Taylor series expansion

~ g(fe—1,ut) + Gy (xr—1 — pht—1)
Jacobian Matrix

‘the rate of change in x’
‘slope of the function’

&

B3| =

play | ug, 1) ~ det (2w Ry) ™

1
exp (= 5 (@0 = glue 1) = Ge (w11 = pr-))"

Ry (zp — gug, pe—1) — Gy (41 — Mt—lp)

Y

linearized model
38

Jacobian Visualization

* Jacobian is the orientation of the tangent plane to a multi-variant
function at a given point, i.e., slope of the function.

* It generalizes the gradient (or tangent line) of a single-variant function.

mll\l'ﬂ?ﬂb‘.lm

Courtesy: K. Arras

39

Sensor Model Linearization

h(z:) ~ h(fit) - @iggit) (Te—1 — [it)

Taylor series expansion

~ h(py) + Hy (v — fig)
Jacobian Matrix

‘the rate of change in x’
‘slope of the function’

1
2

p(z¢ | x¢) = det (27Qy)

1

exp (5 (20 — M) — Hy (20 — f3))"

Q7" (24— h(fir) — Hy (w¢ — 1))

.

linearized model

40

EKF Algorithm

Kalman Filter

fe = Agprs—1 + Buy

K, = X_]tCtT(CtitCtT + Qt)—l

Uy = [t + Kt(zt — Ot/at)

Y = (I — K Cy)Xy

Extended KF

fr = g(pe—1,uz)
St p— Gtit_lG;r _I_ R

K, =S H (HSHT +Q)

py = fig + K (ze — h(jiz))
Et p— (I — Kth)i{;

41

2020-11-17 Tue 06/lgs 8> { .
-~ 18 ('/, H 1 .
CyberZoo T : ! | Speed: 20x

https://www.youtube.com/watch?v=iTe6-lLp5iM

https://www.youtube.com/watch?v=NVf9uUJV7QY

EKF 2D Example

state: position-velocity

: < T position
iL’ velocity
z=\)
. position
{\(b(_\cg) ’y velocity
. > _ -
R
S
§ constant velocity motion model
3
S 1 At 0 0]
. O 1 0 0
Q A=
; Ce 0 0 1 At
X 0 0 0 1 |

with additive Gaussian noise

EKF 2D Example

measurement: range-bearing

z__fr
|6

measurement model

Is the measurement model linear?

z = h(r,0)

with additive Gaussian noise

non-linear!

What should we do?
45

EKF 2D Example

* Linearize the sensor/measurement model fe = Agpip—1 + Buy
[r] 8 it — AtZt_lAtT —I— R
z = Z _ _ _
:9 Hza_:? Kt:gthT(HtEtHTJFQ) 1
,’L'Q + y2 :| €XT o _
— \% =1 + K —h
i tan_l(y/CC) What is the Jacobian? Ht Kt t(Zt _ (Mt))

Et — (I — Kth)Et
* Linearize the observation/measurement model

I % gg g; 2—; | I cos(f) 0 sin(d) O]
_H — —
I % gg gz g_f',] - —sin(@)/r 0 cos(f)/r O |

46

Problems with EKFs

* Taylor series expansion = poor approximation of non-linear functions,
success of linearization depends on

" Limited uncertainty and
" Limited amount of local non-linearity

 Computing partial derivatives is a pain
e Cannot handle multi-modal (multi-hypothesis) distributions

* What’s next?
* Unscented Kalman Filter (how to better generalize to non-linear models)

* Non-Gaussian noise Kalman Filter (how to generalize the Kalman Filter when
noise distribution is Non-Gaussian)

= Stability and Divergence (how to design a stable KF that does not diverge)

47

	Slide 1: COMPSCI-603: Robotics
	Slide 2
	Slide 3
	Slide 4: Kalman Filter
	Slide 5: Kalman Filter Example
	Slide 6: Bayes Filter and Kalman Filter
	Slide 7: 1D Example of Kalman Filter
	Slide 8: Motion Model
	Slide 9: Motion Model
	Slide 10: Motion Model
	Slide 11: Sensor Model
	Slide 12: Sensor Model
	Slide 13: Prior State Distribution
	Slide 14: Prediction/Estimation
	Slide 15: Correction/Update
	Slide 16: Correction/Update
	Slide 17: Correction/Update
	Slide 18: Correction/Update
	Slide 19: Correction/Update
	Slide 20: Kalman Gain
	Slide 21: Moving to General Kalman Filter
	Slide 22: Linear Models for Kalman Filter
	Slide 23: Linear Gaussian Motion Model
	Slide 24: Linear Gaussian Sensor Model
	Slide 25: General Kalman Filter Variables
	Slide 26: General Kalman Filter Algorithm
	Slide 27: General Kalman Filter Algorithm
	Slide 28: General Kalman Filter Algorithm
	Slide 29: General Kalman Filter Algorithm
	Slide 30: 2D Example of Kalman Filter
	Slide 31: 2D Example of Kalman Filter
	Slide 32: 2D Example of Kalman Filter
	Slide 33
	Slide 34: Motivation of EKF
	Slide 35: Motivation
	Slide 36: Extended Kalman Filter
	Slide 37: Extended Kalman Filter
	Slide 38: Motion Model Linearization
	Slide 39: Jacobian Visualization
	Slide 40: Sensor Model Linearization
	Slide 41: EKF Algorithm
	Slide 42
	Slide 43
	Slide 44: EKF 2D Example
	Slide 45: EKF 2D Example
	Slide 46: EKF 2D Example
	Slide 47: Problems with EKFs
	Slide 48: Backup slides
	Slide 49: Distributions for Kalman Filter
	Slide 50: Properties: Marginalization and Conditioning
	Slide 51: Marginalization
	Slide 52: Conditioning
	Slide 53

