
COMPSCI-603: Robotics
Software for AI Robots

Let’s design a robot together

• Sensors:
▪ RGBD camera: Intel RealSense D435
▪ 360-degree LiDAR: RPLIDAR
▪ Wheel encoder

• Embedded computers:
▪ Nvidia Jetson Nano
▪ Arduino

• Actuators: 63:1 metal gearmotor x 3

• Interaction:
▪ LED ring
▪ Controller

2

Hardware/Software Components

3

Localization

Obstacle
Avoidance

Safety
Monitoring

Path Planning

Visualization Logging
Remote

Monitoring

Hardware/Software Components

4

Localization

Obstacle
Avoidance

Safety
Monitoring

Path Planning

Visualization Logging
Remote

Monitoring

Hardware/Software Components

5

Localization

Obstacle
Avoidance

Visualization Logging

Safety
Monitoring

Remote
Monitoring

Path Planning

Hardware/Software Components

6

Localization

Obstacle
Avoidance

Visualization Logging

Safety
Monitoring

Remote
Monitoring

Path Planning

Besides, an AI robot may need: object detection, facial
recognition, manipulation, language-based interaction, …

And…

What if we want to design two different robots?

What a headache!

How can we deal with these software components?

ROS: Robot Operating System

7

ROS is open-source middleware that provides software
libraries and tools for robotics development

ROS: Robot Operating System

• ROS has two “sides”:
▪ The operating system side, which provides standard operating system

services such as:
ohardware abstraction

o low-level device control

o implementation of commonly used functionality

omessage-passing between processes

opackage management

▪ A suite of user contributed packages that implement common robot
functionality such as perception, mapping and localization, planning,
manipulation, etc.

8

ROS: Robot Operating System

• Modular design.

• Reusable robotics components.

• Hundreds of robots supported http://wiki.ros.org/Robots.

• Now: (unofficially) almost all open-source robots are using certain
components of ROS…

• Hundreds of ready to use algorithms.

• Efficient, so it can be used for actual products, not just prototyping.

• Runs on Ubuntu, also many embedded processors.

• Parallelization and networking made easy, can use multiple machines
simultaneously.

9

http://wiki.ros.org/Robots

ROS: Robot Operating System

10

• Widely used
in robotics
industry jobs.

https://rosindustrial.org/ric/current-members

https://rosindustrial.org/ric/current-members

ROS: Robot Operating System

• The Robot Operating System (ROS) is a flexible framework for writing robot
software.

• It is a collection of tools, libraries, and conventions that aim to simplify the task of
creating complex and robust robot behavior across a wide variety of robotic
platforms.

• From drivers to state-of-the-art algorithms, and with powerful developer tools,
ROS has what you need for your next robotics project.

• And it’s all open source.

11

ROS: Robot Operating System

• Plumbing: ROS provides messaging infrastructure designed to
support the quick and easy construction of distributed computing
systems.

12

ROS: Robot Operating System

13

Localization
Obstacle

Avoidance
VisualizationLogging

Safety
Monitoring

Remote
Monitoring

Path Planning

LiDAR Scans

RGBD Images

Joystick Controls

Odometry

Motor Commands

Communication

Go-To Commands

...

...

...

ROS: Robot Operating System

• Tools: ROS provides an extensive set of tools for configuring, starting,
introspecting, debugging, visualizing, logging, testing, and stopping
distributed computing systems.

14

ROS: Robot Operating System

• System visualization: rqt_graph

15

ROS: Robot Operating System

• Logging and visualization of sensor data: rosbag and rqt_bag

16

ROS: Robot Operating System

• 3D Visualization: RViz

17

18DARPA Robotics Challenge: https://www.youtube.com/watch?v=k2wVj0BbtVk

ROS: Robot Operating System

• 3D High-Fidelity Simulation:

https://www.youtube.com/watch?v=k2wVj0BbtVk

ROS: Robot Operating System

• Capabilities: ROS provides a broad collection of libraries that
implement useful robot functionality, with a focus on mobility,
manipulation, and perception.

19

ROS: Robot Operating System

20

ROS: Robot Operating System

• Ecosystem: ROS is supported and improved by a large community,
with a strong focus on integration and documentation. ros.org is a
one-stop-shop for finding and learning about the thousands of ROS
packages that are available from developers around the world.

21

ROS: Robot Operating System

• Worldwide User Base (ros.org)

22

ROS: Robot Operating System

• A history of ROS:
▪ Early days at Stanford: before 2007

▪ Willow Garage: 2007-2013

▪ OSRF and Open Robotics: 2013-present
o Open Source Robotics Foundation (OSRF) changed

its name to Open Robotics in 2017.

• We will use ROS Noetic

23

COMPSCI-603: Robotics
ROS Basics

ROS: Main Concepts

• Nodes

• Topics

• Messages

• Services

• ROS Master

• Parameters

• Packages

25

ROS: Main Concepts

• Nodes
▪ Single-purposed executable programs that perform computation.

o E.g., sensor driver(s), actuator driver(s), mapper, planner, UI, etc.

▪ Each node has a unique name.

▪ Individually compiled, executed, and managed.

▪ Nodes are written using a ROS client library.
o rospy – python client library (used in this course)

o roscpp – C++ client library

▪ Nodes can publish or subscribe to Topics.

▪ Nodes can also provide or use Services.

26

ROS: Main Concepts

• Nodes
▪ Single-purposed executable programs that perform computation.

27

Camera

Localization

Path
Planning

ROS: Main Concepts

• Topics
▪ Names for a stream of broadcasting messages.

▪ Each topic is uniquely identifiable by its name.

▪ Each topic has a defined message type.
o E.g., data from a laser range-finder might be sent on a topic called scan, with a message

type of LaserScan.

▪ Topics implement a Publish/Subscribe model: 1-to-N broadcasting.

▪ Nodes communicate with each other by publishing and receiving messages
from topics.

28

ROS: Main Concepts

• Topics
▪ Names for a stream of broadcasting messages.

29

Camera

Localization

Path
Planning

/cam/img
/map/pos

ROS: Main Concepts

• Messages
▪ Strictly-typed data structures for inter-node communication.

▪ Language agnostic data structures, so that Python nodes can talk to C++ nodes.

▪ Examples:
o Pose2D, Pose

30

Localization

Path
Planning

/map/pos

geometry_msgs/Pose2D

float64 x

float64 y

float64 theta

ROS: Main Concepts

• Messages
▪ Strictly-typed data structures for inter-node communication.

▪ Language agnostic data structures, so that Python nodes can talk to C++ nodes.

▪ Examples:
o Pose2D, Pose

o Twist

31

Localization

Path
Planning

/map/pos

geometry_msgs/Pose2D

float64 x

float64 y

float64 theta

Control

cmd_vel

geometry_msgs/Twist

Vector3 linear

 float64 x

 float64 y

 float64 z

Vector3 angular

 float64 x

 float64 y

 float64 z

ROS: Main Concepts

• Services
▪ Inter-node transactions by request and response.

▪ Service/Client model to enable 1-to-1 request-response.

▪ Service roles:
o Trigger functionality/behavior.

o Perform remote or asynchronized
computation/storage.

32

Localization

Path
Planning

/map/pos

Battery
indicator

ROS: Main Concepts

• ROS Master
▪ Provides name registration and lookup to nodes.

▪ Every node connects to the ROS Master at startup to register details of the
message streams they publish, and the streams to which that they to subscribe.

▪ When a new node appears, ROS Master provides it with the information that it
needs to form a direct peer-to-peer connection with other nodes publishing and
subscribing to the same message topics.

▪ Without the ROS Master, nodes would not be able to find each other, exchange
messages, or invoke services.
o For this reason, ROS (more accurately ROS1) is a centralized system.

33

ROS: Main Concepts

• ROS Master
▪ Provides name registration and lookup to nodes.

34

Camera

Image
Viewer

ROS
Master

Publish
Camera

Image
Viewer

ROS
Master

Subscribe

Img

Camera

Image
Viewer

ROS
Master

Img

ROS: Main Concepts

• Parameter Server
▪ Is typically used to save configuration

information in ROS.

▪ A shared, multi-variate dictionary that is
accessible via network APIs.

▪ Nodes use this server to store and
retrieve parameters at runtime.

▪ Best used for static data such as
configuration parameters.

▪ Runs inside the ROS master.

35

ROS Master

Parameter Server
/robot_name : “my_robot”
/sensor_read_frequency : 30
/simulation_mode : false

Node A Node B Node C

• Packages
▪ Software programs in ROS are organized in packages.

▪ A package contains one or more nodes and provides
a ROS interface with package information

ROS: Main Concepts

36

ROS: Main Concepts

• ROS Environment
▪ ROS relies on the notion of combining spaces using the shell environment.

o This makes developing against different versions of ROS or against different sets of
packages easier.

▪ After you install ROS you will have to setup.*sh files in '/opt/ros/<distro>/',
and you could source them like so:

▪ You will need to run this command on every new shell you open to have
access to the ROS commands, unless you add this line to your bash startup
file (~/.bashrc).

37

$ source /opt/ros/noetic/setup.bash

COMPSCI-603: Robotics
Overview of ROS Programming in Python

catkin Build System

• catkin is the ROS build system.
▪ The set of tools that ROS uses to generate executable programs, libraries and

interfaces.

• Implemented as custom CMake macros along with some Python code.
▪ CMake is an open-source, cross-platform family of tools designed to build, test

and package software.

39

catkin Workspace

40

catkin workspace

src build devel install

package1 package2 package3

Source space It contains the source code of catkin packages. Each folder within the source space
contains one or more packages.

Build Space It is where CMake is invoked to build the catkin packages in the source space.
CMake and catkin keep their cache information and other intermediate files here.

Development Space It is where built targets are placed prior to being installed.

Install Space Once targets are built, they can be installed into the install space by invoking the
install target.

catkin Workspace

• To create and build a catkin
workspace, run:

• To install final packages:

41

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/

$ catkin_make

More info:
http://wiki.ros.org/catkin/Tutorials/using_a_workspace

$ cd ~/catkin_ws/build

$ make install

http://wiki.ros.org/catkin/Tutorials/using_a_workspace

ROS Packages

• ROS software is organized into packages, each of which contains a
combination of code, data, and documentation.

• A ROS package is placed as a directory inside a catkin workspace that
has a package.xml file in it.

• A package contains the source files for one node or more, and
configuration files.

• Packages are the most atomic unit of build and the unit of release.

42

ROS Packages

43

catkin workspace

src build devel install

package1 package2

CMakeLists.txt package.xml scripts src msg srv include launch

package3

∗.py ∗.sh ∗.cpp ∗.msg ∗.srv ∗.h ∗.launch

ROS Packages

• package.xml defines
properties of the
package:
▪ the package name,

version numbers,
authors,
dependencies on
other catkin
packages, and more.

44

ROS Packages

• To create a ROS package, change to the source directory of the
workspace:

• catkin_create_pkg creates a new package with the specified
dependencies:

• For example, to create a package named first_pkg, run:

• Then, catkin_make the workspace and don’t forget to add the env:

45

$ cd ~/catkin_ws/src

$ catkin_create_pkg <package_name> [depend1] depend2] [depend3]

$ catkin_create_pkg first_pkg std_msgs rospy roscpp

$ cd ~/catkin_ws

$ catkin_make

$. ~/catkin_ws/devel/setup.bash

ROS Example: Talker and Listener

• We will create a package with two nodes:
▪ talker publishes messages to topic chatter.

▪ listener reads the messages from the topic and prints them out to the screen.

46
talker.py

ROS Example: Talker Node

• Within a package
folder, create Python
scripts in the “scripts”
folder:

• After editing, make it
executable:

47

$ roscd first_pkg

$ mkdir scripts

$ cd scripts

$ vi talker.py

$ chmod +x talker.py

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

 rospy.loginfo(hello_str)

pub.publish(hello_str)

rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• ROS Noetic uses Python 3.
• Earlier versions used Python 2:

#!/usr/bin/env python

ROS Example: Talker Node

48

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

 rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• Import rospy when
writing a Python ROS Node.
▪ rospy is a pure Python

client library for ROS.
▪ rospy favors

implementation speed
(i.e., developer time) over
runtime performance.

• Exception block monitors
interruption exceptions:
▪ Ctrl-C
▪ Node shutdown
▪ Node sleep

ROS Example: Talker Node

49

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• This line of code creates
a ROS node.

• The argument talker is
the name of the node.

• anonymous=True adds
random numbers to the
end of the node name to
ensure it is unique.
▪ Spawn multiple copies

of the node without
collision.

ROS Example: Talker Node

50

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• This declares that the
node publishes to the
chatter topic using the
message type String.

• It registers the topic in
ROS Master and manage
the advertisement.

• It has three parameters:
1. Topic name
2. ROS message type

(NOT Python type)
3. Queue size (buffer size)

ROS Example: Talker Node

51

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• This publishes a message
with the type String to
the topic named
chatter.

• The message’s type must
strictly agree with the
type given as a type
parameter to the
Publisher call.

ROS Example: Talker Node

52

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• rospy.Rate() is designed
to run loops at a desired
frequency (in Hz).

• rospy.sleep() method
• Sleeps for any leftover

time in a cycle.
• Is calculated from the

last time sleep, reset, or
when the constructor
was called.

ROS Example: Talker Node

53

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• rospy.is_shutdown()is
used to check if the node is
shutdown (to determine
whether the node should
continue running).

• It returns true if:
▪ Ctrl-C is received.
▪ the node is kicked off the

network by another node
with the same name.

▪ rospy.shutdown() is
called by another part of
the program.

▪ The node is destroyed.

ROS Example: Talker Node

54

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10)

rospy.init_node('talker', anonymous=True)

 rate = rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

try:

 talker()

except rospy.ROSInterruptException:

 pass

• rospy.loginfo(str) is
ROS logging that
• Prints the messages to

the screen.
• Writes them to the

node’s log file.
• Writes them to rosout.

rospy.logdebug(hello_str)

rospy.logwarn(hello_str)

rospy.logerr(hello_str)

 rospy.logfatal(hello_str)

ROS Example: Talker and Listener

• We will create a package with two nodes:
▪ talker publishes messages to topic chatter.

▪ listener reads the messages from the topic and prints them out to the screen.

55
listener.py

ROS Example: Listener Node

56

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def callback(data):

 rospy.loginfo(rospy.get_caller_id() + "I heard %s",

data.data)

def listener():

 rospy.init_node('listener', anonymous=True)

 rospy.Subscriber("chatter", String, callback)

 rospy.spin()

if __name__ == '__main__':

 listener()

• Rospy.Subscriber()

declares a subscriber to
listen to a topic chatter.

• It has three parameters:
1. Topic name
2. ROS message type
3. Callback function to

handle the message

ROS Example: Listener Node

57

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def callback(data):

 rospy.loginfo(rospy.get_caller_id() + "I heard %s",

data.data)

def listener():

 rospy.init_node('listener', anonymous=True)

 rospy.Subscriber("chatter", String, callback)

 rospy.spin()

if __name__ == '__main__':

 listener()

• When a new messages is
received, callback is invoked
with the message as the
argument.

• Note that actual message
content is in the .data
attribute:

ROS Example: Listener Node

58

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def callback(data):

 rospy.loginfo(rospy.get_caller_id() + "I heard %s",

data.data)

def listener():

 rospy.init_node('listener', anonymous=True)

 rospy.Subscriber("chatter", String, callback)

 rospy.spin()

if __name__ == '__main__':

 listener()

• rospy.spin() keeps the
node from exiting until the
node has been shutdown.

ROS Example: Listener Node

59

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def callback(data):

 rospy.loginfo(rospy.get_caller_id() + "I heard %s",

data.data)

def listener():

 rospy.init_node('listener', anonymous=True)

 rospy.Subscriber("chatter", String, callback)

 rospy.spin()

if __name__ == '__main__':

 listener()

• The exception handling
block is not necessary for a
pure subscriber since it
does not generate data to
the system.

ROS Example: Talker and Listener

• To build your nodes, run:

• To run both nodes, in three
separate terminal windows, run:

60

$ cd ~/catkin_ws

$ catkin_make

$ roscore

$ rosrun first_pkg talker.py

$ rosrun first_pkg listener.py

Win 1:
Win 2:
Win 3:

ROS Example: Talker and Listener

• To visualize what’s going on in ROS, rqt_graph can be used to create a
dynamic graph of nodes, topics, etc.

61

$ rosrun rqt_graph rqt_graph

ROS Launch

• roslaunch is a tool for easily launching multiple ROS nodes as well
as setting parameters on the Parameter Server.

• roslaunch operates on launch files which are XML files that specify
a collection of nodes to launch along with their parameters.

• By convention, these files have a suffix of .launch, with the syntax:

• roslaunch automatically runs roscore.

62

$ roslaunch package_name file.launch

ROS Launch

• Launch file for launching the talker and listener nodes:

• Each <node> tag includes attributes declaring the ROS graph name of the
node, the package in which it can be found, and the type of node, which
is the filename of the script or executable program.

• output=“screen” makes the ROS log messages appear on the launch
terminal window.

63

<launch>

 <node name="talker" pkg="first_pkg" type="talker.py" output="screen"/>

 <node name="listener" pkg="first_pkg" type="listener.py" output="screen"/>

</launch>

64

	Slide 1: COMPSCI-603: Robotics
	Slide 2: Let’s design a robot together
	Slide 3: Hardware/Software Components
	Slide 4: Hardware/Software Components
	Slide 5: Hardware/Software Components
	Slide 6: Hardware/Software Components
	Slide 7: ROS: Robot Operating System
	Slide 8: ROS: Robot Operating System
	Slide 9: ROS: Robot Operating System
	Slide 10: ROS: Robot Operating System
	Slide 11: ROS: Robot Operating System
	Slide 12: ROS: Robot Operating System
	Slide 13: ROS: Robot Operating System
	Slide 14: ROS: Robot Operating System
	Slide 15: ROS: Robot Operating System
	Slide 16: ROS: Robot Operating System
	Slide 17: ROS: Robot Operating System
	Slide 18: ROS: Robot Operating System
	Slide 19: ROS: Robot Operating System
	Slide 20: ROS: Robot Operating System
	Slide 21: ROS: Robot Operating System
	Slide 22: ROS: Robot Operating System
	Slide 23: ROS: Robot Operating System
	Slide 24: COMPSCI-603: Robotics
	Slide 25: ROS: Main Concepts
	Slide 26: ROS: Main Concepts
	Slide 27: ROS: Main Concepts
	Slide 28: ROS: Main Concepts
	Slide 29: ROS: Main Concepts
	Slide 30: ROS: Main Concepts
	Slide 31: ROS: Main Concepts
	Slide 32: ROS: Main Concepts
	Slide 33: ROS: Main Concepts
	Slide 34: ROS: Main Concepts
	Slide 35: ROS: Main Concepts
	Slide 36: ROS: Main Concepts
	Slide 37: ROS: Main Concepts
	Slide 38: COMPSCI-603: Robotics
	Slide 39: catkin Build System
	Slide 40: catkin Workspace
	Slide 41: catkin Workspace
	Slide 42: ROS Packages
	Slide 43: ROS Packages
	Slide 44: ROS Packages
	Slide 45: ROS Packages
	Slide 46: ROS Example: Talker and Listener
	Slide 47: ROS Example: Talker Node
	Slide 48: ROS Example: Talker Node
	Slide 49: ROS Example: Talker Node
	Slide 50: ROS Example: Talker Node
	Slide 51: ROS Example: Talker Node
	Slide 52: ROS Example: Talker Node
	Slide 53: ROS Example: Talker Node
	Slide 54: ROS Example: Talker Node
	Slide 55: ROS Example: Talker and Listener
	Slide 56: ROS Example: Listener Node
	Slide 57: ROS Example: Listener Node
	Slide 58: ROS Example: Listener Node
	Slide 59: ROS Example: Listener Node
	Slide 60: ROS Example: Talker and Listener
	Slide 61: ROS Example: Talker and Listener
	Slide 62: ROS Launch
	Slide 63: ROS Launch
	Slide 64
	Slide 65
	Slide 66: ROS: Common Commands
	Slide 67: ROS: Common Commands
	Slide 68: ROS: Common Commands
	Slide 69: ROS: Common Commands
	Slide 70: ROS: Common Commands
	Slide 71: ROS: Common Commands
	Slide 72
	Slide 73: ROS: Common Commands
	Slide 74: ROS: Common Commands
	Slide 75
	Slide 76
	Slide 77: ROS: Robot Operating System
	Slide 78: ROS: Robot Operating System
	Slide 79: ROS: Robot Operating System
	Slide 80: ROS: Robot Operating System
	Slide 81: ROS: Main Concepts
	Slide 82: A Note on Languages
	Slide 83: ROS Names
	Slide 84: Subscriber in C++ (Brief)

