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Localization: Where Am I?
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Localization and Navigation

• How to navigate between A and B?
▪ Possible by always following the left wall, 

▪ But how to detect that the goal is reached?

• Localization is typically a necessary component for robot 
navigation:
▪ A robot must identify 

whether it reaches the 
goal position.

▪ A robot often needs to 
know its location for 
path planning.
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Types of Robot Localization

• “Position tracking” – figure out where the robot is, given that we 
know where the robot started.
▪ Solutions: Odometry, dead reckoning, etc. 

• “Global” localization – figure out where the robot is, but we don’t 
know where the robot started.
▪ Solution: GPS, place recognition, etc.

• “Kidnapped robot” – robot is moved by external agent to any 
arbitrary location.
▪ It is more difficult than the global localization problems, in that the robot 

might believe it knows where it is while it does not.

▪ Solution: GPS, place recognition, etc.
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Challenges of Robot Localization

• Absolute position (e.g., GPS) may be 
unavailable, unreliable, and in many 
situations, insufficient.

• Sensors are always noisy and may 
provide irrelevant information, which 
may be caused by
▪ Environment properties, e.g., mirror 

reflection or reflective floor surface.

▪ Environment changes, e.g., weather, 
seasonal changes, earthquake, etc.

▪ Interference between sensors, e.g., 
ultrasonic sensors, structured-light sensors.
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Challenges of Robot Localization

• Perceptual/Sensing Aliasing
▪ In robots, non-uniqueness of sensors readings is the norm.

▪ Even assuming sensor readings are perfect, robot localization still suffers from 
the challenge of perceptual aliasing:
o different places generate a similar visual (or, in general, perceptual) footprint.

6



Odometry and Dead Reckoning

• These methods update robot 
position and orientation based on 
proprioceptive sensors.
▪ Odometry: wheel sensors only

▪ Dead reckoning: also heading sensors 
(e.g., gyroscope or compass)

• Pros: Straight forward, easy.

• Cons Errors are unbounded.
▪ Limited sensing resolution.

▪ Misalignment of motors (e.g., wheels).

▪ Unequal floor contact (e.g., slipping).
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Place Recognition

• Place recognition aims to identify a place using a map, or templates of 
places that were previously visited by the robot.

• Landmark-based place recognition is commonly used by humans for 
localization.

• Pros: Intuitive

• Cons: Easily to suffer 
from perceptual 
aliasing and 
environment 
changes.
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Same  
location?

Pre-disaster Post-disaster



Types of Robot Localization

• “Position tracking” – figure out where the robot is, given that we 
know where the robot started.
▪ Solutions: Odometry, dead reckoning, etc. 

• “Global” localization – figure out where the robot is, but we don’t 
know where the robot started.
▪ Solution: GPS, place recognition, etc.

• “Kidnapped robot” – robot is moved by external agent to any 
arbitrary location.
▪ Solution: GPS, place recognition, etc.
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Probability Rules and Bayes Theorem
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Refresher on Probability Rules and Bayes Theorem
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• Discrete Probabilities:

Slides modified from Prof. Joydeep Biswas



Refresher on Probability Rules and Bayes Theorem

• If 𝑥 takes on continuous values, 𝑝(𝑥) is not a probability, it is the 
probability density.

• Asking "what is the probability of 𝑥 = <some specific value>" has no 
meaning (the most appropriate answer is 0). 
▪ E.g., if we assume that the tip of a dart is a point, the probability for the dart 

to land at a specific point on a broad is 0. 

• An appropriate question is "what is the probability of 𝑥 in <some 
continuous range>":
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Refresher on Probability Rules and Bayes Theorem

• Conditions:

▪ Often colloquially read as "probability of 𝑥 given 𝑦“, e.g., probability that the 
robot is at position 𝑥 given the sensor input 𝑦.

▪ But this is not quite right!

▪ It also does not mean we know the "value" of 𝑦 as 𝑝(𝑦) is still a distribution!

▪ Better way to think about it: If we know nothing about 𝑝(𝑦), then 𝑝(𝑥) is the 
best we can infer about 𝑥. However, if we do know that 𝑦 has a distribution 
𝑝(𝑦), then 𝑝(𝑥|𝑦) is a more informative distribution: it is the distribution of 𝑥 
if 𝑦 has the distribution 𝑝(𝑦).
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Refresher on Probability Rules and Bayes Theorem

• From discrete to continuous random variables:
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Discrete Continuous 



Refresher on Probability Rules and Bayes Theorem

• There are two operations we often would like to perform, for a 
distribution 𝑝(𝑥):
▪ Sample a random value: 𝑥~𝑝(𝑥)

▪ Evaluate the probability density at a particular value: 𝑝(𝑥)|𝑥=𝑥0
. It is the limit 

of the probability of the interval (𝑥, 𝑥 + Δ] divided by the length of the 
interval as the length of the interval goes to 0.

• For a conditional distribution 𝑝 𝑥 𝑦  when 𝑦 = 𝑦0:
▪ Sample a random value: 𝑥~𝑝 𝑥 𝑦 |𝑦=𝑦0

▪ Evaluate the probability density at a particular value: 𝑝(𝑥|𝑦)|𝑥=𝑥0,𝑦=𝑦0
.
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Refresher on Probability Rules and Bayes Theorem

• Bayes Rule
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Bayesian State Estimation
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Chapter 2.4, Sebastian Thrun, Wolfram Burgard and Dieter Fox. 
“Probabilistic Robotics.” MIT Press. 2005.



The “Belief”

• Belief (in robotics) is defined as the distribution of the robot's state 
estimates:

• Characteristics:
▪ Belief is a Probability Density Function (pdf).

▪ It accounts for all data observed so far from time step 1 to t.

▪ “Optimal” estimate is still a pdf.
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𝑥 : state (e.g., robot location)
𝑢 : control
𝑠 : sensing observations



Belief State Estimation

• In robotics, State Estimation is the field that deals with the challenge 
of using on-board sensors to estimate the state, such as position and 
orientation, of a robot as it moves through the world.

• Belief State Estimation uses belief to represent the distribution of 
state estimates.

• Variations of the belief state estimation 
are based on:
▪ Sensing (e.g., place recognition)

▪ Control (e.g., odometry)

▪ Availability of prior state distribution

▪ Prior data (e.g., map)
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State Estimation

• Given inputs:
▪ Motion model / state transition:

▪ Sensor model / observation model :
 

• Wanted output to compute:

 
• Note:

▪ These are functions of all the variables, not just the first

▪ In the state estimation algorithm, we will evaluate them at specific values
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Motion Model

• Motion model is mathematically defined as: 

• It predicts how likely for the robot to go from a previous location to 
the next location based on control (or odometry). 

• Variations of motion models:
▪ 𝑢 is based entirely on motion commands sent (velocity).

▪ 𝑢 is from encoder measurements (odometry).

▪ 𝑢 is from IMU (accelerometer & gyroscope) measurements.

▪ No 𝑢: state estimation of an agent not under our control, e.g., a pedestrian. 
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Sensor Model

• Sensor model / observation model:

• It predicts: 
▪ What the robot expects to observe at a given 𝑥 (given an optional domain-

specific prior data 𝐷, like the map), and

▪ Based on the sensor noise model, how likely to observe a specific value of 𝑠.

• Factors that contribute to the sensor model:
▪ Sensor noise model

▪ Sensor limitations (e.g., range, resolution)

▪ Environmental / domain factors (e.g., moving obstacles, surface parameters)

▪ Other random errors
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Markov State Estimation

● Markov property: Past 
observations/states are independent 
of future observations/states given 
the current observations/states.
▪ Observations are Markov: given state 𝑥𝑡  at 

time 𝑡, observation 𝑠𝑡 is independent of all 
past states and observations.

▪ States are Markov: given state 𝑥𝑡  at time 𝑡 
and control 𝑢𝑡+1 at time 𝑡 + 1, state 𝑥 at 
time 𝑡 + 1 is independent of all other past 
states and observations.
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● Markov state estimation can be mathematically formulated with a 
dynamic Bayesian network.



Derivation: Recursive Belief Update

• Goal: Given the belief at 𝑡, the motion model, and the sensor model, 
represent the belief at time 𝑡 + 1 as a function of the belief at 𝑡.

• Recall: conditional are preserved 
in Bayes rule:

24



Derivation: Recursive Belief Update

25

Bayes' rule to account for 
the sensor model



Derivation: Recursive Belief Update
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Introducing term from previous 
time-step using marginalization

Markov assumption

Bayes' rule to account for 
the sensor model



Derivation: Recursive Belief Update
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Markov assumption

Introducing term from previous 
time-step using marginalization

Markov assumption

Bayes' rule to account for 
the sensor model



Recursive Belief Update

• Given the previous belief, the update requires integration over all 
possible states.

• Note the proportion sign: a re-normalization is required after each 
recursive belief update, because belief is a distribution.
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Bayesian Markov State Estimation

• Given belief              ,
▪ If a motion model (e.g., odometry) is available, predict as 

▪ If a sensor model (e.g., using LiDAR/camera data) is available, update as

• One step can be repeatedly applied when the other is not available.

• Most real robotics applications have both.

29

"Predict/estimate"

“Correct/update"



Markov Localization
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Chapter 7.3-7.4, Sebastian Thrun, Wolfram Burgard and Dieter 
Fox. “Probabilistic Robotics.” MIT Press. 2005.



Markov Localization

• Markov localization is a classic solution to address probabilistic, map-
based localization.

• Consider a mobile robot moving in a known environment:
▪ As it starts to move (e.g., from a precisely known location), it might keep track 

of its location using odometry. 

▪ However, after a certain movement the robot will get very uncertain about its 
position. Then the robot will need to update its position using an observation 
of the environment.

• Odometry information leads to an estimate of the robot’s position, 
which can then be fused with the sensor observations to get the best 
possible update of the robot’s actual position. 
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Markov Localization

• Markov localization uses an explicit, discrete representation of the 
positions as states.

• This is usually done by representing the environment by a grid or a 
topological graph with a finite number of possible states (positions).

32

Image Credit: G. Gemignani



Markov Localization

• Key idea: compute a discrete probability distribution over all possible 
states (positions) in the environment.
▪ Each value in this distribution 

represents the probability that 
the robot is in a particular location.

▪ Markov localization recursively 
maintains the estimates of the 
positions.

▪ During each update, the 
probability for each position 
of the entire space is updated.
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Markov Localization: Example

• The robot doesn’t know where it is. Thus, a reasonable initial believe 
of its position is a uniform distribution.

34



Markov Localization: Example

• A sensor reading is made (depending on a sensor model) indicating a 
door at certain locations (using a map). 

• The sensor reading is used to update the belief (using Bayes theorem).
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𝐩(𝐬|𝐱)



Markov Localization: Example

• The robot is moving, which adds noise.

• The robot then can estimate its new belief (using a motion model).
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Markov Localization: Example

• A sensor reading is made (using a sensor model) indicating a door at 
certain locations (using a map). 

• The sensor reading is used to update the belief (using Bayes theorem).
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𝐩(𝐬|𝐱)



Markov Localization: Example

• Repeat the estimation/prediction and correction/update.
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Markov Localization: Example

• Markov localization uses discrete beliefs
▪ Histogram can be used as a non-parametric 

model to approximate a distribution
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𝐩(𝐬|𝐱)

𝐩(𝐬|𝐱)



Motion Model
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Chapter 5, Sebastian Thrun, Wolfram Burgard and Dieter Fox. 
“Probabilistic Robotics.” MIT Press. 2005.



Robot Motion

• Robot motion is inherently uncertain.

• How can we model this uncertainty?
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Motion Model
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• Motion model specifies a posterior probability that action 𝑢 carries 
the robot from 𝑥𝑡−1 to 𝑥𝑡. 



Coordinate Systems

• In 3D space, the pose of a robot can be described by six parameters:
▪ Three-dimensional Cartesian coordinates

▪ Three Euler angles pitch, roll, and yaw

• In the lecture, we consider 
robots operating on a 
planar surface.

• The state space of such 
coordinate system is
three-dimensional (𝑥, 𝑦, 𝜃)
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Typical Motion Models

• Two motion models are often used in practice:
▪ Odometry-based

▪ Velocity-based

• Odometry-based models are used when systems are equipped with 
wheel encoders (or IMU).
▪ They calculate the new pose based on encoder (or IMU) values.

• Velocity-based models are used when no wheel encoders (or IMU 
measurements) are given.
▪ They calculate the new pose based on the velocities and the time elapsed. 

• We will focus on the odometry-based motion models.
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Wheel Encoder Examples

• Typically, these modules require +xV and GND to power them, and 
provide a 0 to xV output. They provide +xV output when they see a gap, 
and a 0V output when they do not see a gap.
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Odometry-based Motion Model

• Robot moves from                 to                   

46

How can a robot move from one pose to another pose?



Odometry-based Motion Model

• Robot moves from                 to                   

• Odometry information       

47
Rotation Translation Rotation (RTR) model



Odometry-based Motion Model

• Robot moves from                 to                   

• Odometry information       
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Rotation Translation Rotation (RTR) model



The atan2 Function

• Extends the inverse tangent (or arctangent)
and correctly copes with the signs of x and y.
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Uncertainty in Motion (of Wheeled Robots)
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and many more …



Noise Model for Odometry

• The measured motion is given by the true motion corrupted with noise.     

1. One way to model the noise is to simply center a Gaussian noise in 
the pose                  only, but this cannot model the reality well. 

2. For the RTR model, the noise is introduced by any rotation and 
translation motions.

• Why are these two methods different?
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+ Gaussian noise
+ Gaussian noise

+ Gaussian noise



Noise Model for Odometry
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+ Gaussian noise
+ Gaussian noise

+ Gaussian noise



Recall: Gaussian Distribution to Model Noise
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What is the label of the y-axis?



Calculating the Probability Density (Zero-Centered)

• For a Gaussian/normal distribution:
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a: query point
b: std. deviation 



Calculating the Posterior
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x: pose or state
u: control

What the odometry u tells us

What we compute from the input x and x’

This posterior answers: what is the probability density of seeing x’, given x and u under RTR?



Uncertainty Propagation in Motion Models

• Repeated application of the motion model for short movements, we 
typically obtain banana-shaped distributions
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Sampling from a Gaussian Distribution

• Sampling from a Gaussian distribution:
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Source and examples: https://bjlkeng.github.io/posts/sampling-from-
a-normal-distribution

Central limit theorem:

https://bjlkeng.github.io/posts/sampling-from-a-normal-distribution
https://bjlkeng.github.io/posts/sampling-from-a-normal-distribution


Sampling from Odometry Motion Model
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Example of Sampling from Motion Model
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Example of Sampling from Motion Model
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Sensor Model

61

Chapter 6, Sebastian Thrun, Wolfram Burgard and Dieter Fox. 
“Probabilistic Robotics.” MIT Press. 2005.



Sensor Model
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• Sensor model (observation model, measurement model) specifies a 
probability distribution of receiving observation 𝑧𝑡 when the robot is 
in state 𝑥𝑡: 



Beam-based Model

• Beam-based models can be used to model range-based sensors.
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Sonar sensors Laser sensors



Beam-based Model

• Scan 𝑧 at time step 𝑡 consists of 𝐾 measurements.

• Individual measurements are independent given the robot position. 
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𝑚: a known map



Range Sensor Measurements and Noise
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Ray-Casting Model

• Ray-casting model considers the first obstacle along the line of sight.

• Simplest noise modeling: Gaussian noise in the measured distance.
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Ray-Casting Model

• More realistic ray-casting model includes a mixture of four models.

• It considers dynamic objects, randomness, max rage, and noise.
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Ray-Casting Proximity Model

68

Measurement noise Max range



Ray-Casting Proximity Model
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Unexpected obstacles Randomness



Ray-Casting Proximity Model

70

Measurement noise Max range

Unexpected obstacles Randomness



Examples: Raw Data
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Sonar sensors (old) Laser sensors

• Measured distances for expected distance of 300 cm.

• Parameters can be estimated using Maximum Likelihood Estimation (MLE).



Examples: Approximation Results
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Sonar sensors Laser sensors



Examples
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Beam-Endpoint Model 

• Pure Beam-Based Model is 
▪ not smooth for small obstacles and at edges.

▪ not easy and efficient to compute.

• Idea for Beam-Endpoint Model to solve this: 
▪ Instead of following along the beam, just check the end point (of the beam).

▪ Simple version: whether there is an obstacle at the end point.

▪ More sophisticated version: what is the distance from the end point to the 
nearest obstacle.
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Likelihood Field Model

1. Given the robot’s location and the 
(penetrating) beam, compute the 
location of the beam end                     .

2. Compute the Euclidean distance  𝑑𝑖𝑠𝑡 
between the end point and the end 
point’s nearest object in map 𝑚.

3. The probability of a LiDAR sensor 
measurement is given by a zero-
centered Gaussian:
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Likelihood Field Model
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• The distance at each point to the nearest 
obstacle can be pre-computed, and 
stored into a distance matrix or field as a 
lookup table.

• The value at each point in this field 
indicates the distance to the nearest 
obstacle:
▪ Brute force calculation  

▪ Distance transformation (from CV)

▪ Brushfire algorithm (from planning)



Likelihood Field Model

77

• The distance matrix or field can be saved as an image, which can also be 
corrupted by Gaussian noise centered at each point. 

• The brighter a location:
▪ The closer it is to the 

nearest obstacle.

▪ The more likely it is to 
measure an obstacle with 
a range finder.



Likelihood Field Model
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Likelihood Field Model
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• The density          of a beam-based model can be obtained by intersecting 
(and normalizing) the likelihood field by the sensor axis (e.g., indicated by 
the dashed line)



Likelihood Field Model

• So far, we only considered the measurement noise model.

• Two other components: maximum range            , and randomness            .
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Measurement only Full model

Do we need to consider the unexpected obstacle model?



Likelihood Field Model
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Multiply the individual values of  

If the sensor reading is a max range reading, ignore it

Compute end 
point location

Check lookup 
table (dist matrix)

Compute 
probability density

• Given robot pose 𝑥 and LiDAR reading 𝒛 with 𝑘 beams, compute 𝑝 𝒛 𝑥 : 



Summary and an Open Discussion
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• Robot coordinate frame

• Odometry from proprioceptive sensors



Calculating the Posterior Using Motion Model
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x: pose or state
u: control

What the odometry u tells us

What we compute from the input x and x’

This posterior answers: what is the probability density of seeing x’, given x and u under RTR?



Sampling from Odometry Motion Model
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Likelihood Field Model
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Multiply the individual values of  

If the sensor reading is a max range reading, ignore it

Compute end 
point location

Check lookup 
table (dist matrix)

Compute 
probability density

• Given robot pose 𝑥 and LiDAR reading 𝒛 with 𝑘 beams, compute 𝑝 𝒛 𝑥 : 



Particle Filters
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Chapter 4.2, Sebastian Thrun, Wolfram Burgard and Dieter Fox. 
“Probabilistic Robotics.” MIT Press. 2005.



Particle Filter

• Definition: 
▪ Particle filter is a Bayesian filter that samples the whole hypothesis space by a 

weight function derived from the previous belief (and motion/sensor models).

▪ Particle filter is a Monte Carlo method – a computational method that relies on 
sampling to obtain numerical results.

• In robot localization,
▪ Particle filter is used to estimate robot poses that are non-Gaussian and non-

linear in general.

▪ Samples or “particles” are used to represent state hypothesis (i.e., poses) and 
belief (as a distribution).

▪ Particle filter updates its belief through survival of the fittest particles (best fit 
to sensor observations).
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Weighted Samples

• Goal: dealing with arbitrary distributions using a smaller number of 
samples, or particles in the context of particle filters.

88
Frequency-based particles



Weighted Samples

• Key idea: multiple weighted particles to represent an arbitrary 
distribution with a smaller number of particles.
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Weighted particles



Particle Set

• Set of weighted particles:

 

• The particles represent the posterior

state
hypothesis

importance
weight

Delta (or Dirac) function
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Particles for Approximation

• We know that particles can be used to approximate a PDF.

• But how to draw particles form a distribution?
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Closed Form Sampling

• Closed form sampling is only possible for a few distributions.

• Sampling from a Gaussian distribution:
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How to sample from other or arbitrary distributions?



Importance Sampling Principle

• We can use a different distribution 𝑔 to generate samples from 𝑓.

• Target distribution 𝑓 (blue).

• Proposal distribution 𝑔 (red).

• Pre-condition: 

          𝑓 𝑥 > 0 → 𝑔(𝑥) > 0

• Account for the “differences 
between 𝑔 and 𝑓 ” using a 
weight 𝑤 =  𝑓(𝑥) / 𝑔(𝑥) at a 
particular 𝑥.
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𝑓

𝑔



Importance Sampling Principle

• Draw particles from 𝑔. 

• Compute weight for 
each particle:
▪ In the figure, the taller 

the particle is, the higher 
weight the particle has.

• Use the weighted particles
to represent 𝑓. 
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𝑓

𝑔



Particle Filter for Bayesian State Estimation

• Particle filter is a non-parametric method to implement a recursive 
Bayes filter:
▪ when distributions are not Gaussian.

▪ (often) when models are non-linear, e.g., motion models.

• The more particles we use, the better is the estimate.

• Prediction <-> drawing from the proposal.

• Correction <-> weighting by the ratio of target and proposal.
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𝑥 : state (e.g., pose)
𝑢 : control
𝑧 : observation

Prediction: 

Correction: 



Particle Filter Algorithm

1. Sample particles using the proposal distribution:

2. Compute the importance weights:

3. Resampling: Draw sample 𝑖 with probability         and repeat 𝐽 times:
▪ The newly sampled particles have equal weight.
▪ This allows us to convert the weighted particles to frequency-based particles 

to represent the same distribution.
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The proposal distribution is 
user defined. Then the math 
equation of the weight must 
be manually derived.
It is a design question!



Particle Filter Algorithm
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𝑥 : state (e.g., pose)
𝑢 : control (e.g., odometry)
𝑧 : observation (e.g., from LiDAR)
X : temporary particle set
X : particle set after resampling
P : proposal distribution 
𝑝 : target distribution



Monte Carlo Localization

• As particle filter is a Monte Carlo 
method, robot localization using 
particle filters is also called 
Monte Carlo Localization.

98

• Proposal is the motion model:

• Correction via the observation 
model to compute weights:



Monte Carlo Localization
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Resampling

• Draw sample 𝑖 with probability         , repeat 𝐽 times.

• Informally: “Replace unlikely samples by more likely ones”

• Survival of the fittest

• “Trick” to avoid that many samples cover unlikely states

• Needed as we have a limited number of samples
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Resampling

101

• Roulette wheel with 𝑛 bins
• Brute force 𝑂 𝑛𝐽 , or 

binary search 𝑂(𝑛𝑙𝑜𝑔𝐽)

• Stochastic universal sampling 
• Also called low variance sampling
• Complexity: 𝑂(𝑛)

𝐽 arms



Monte Carlo Localization Example

• Solving “where am I?” using particles:

102

• Initialization: (in the first step) robot pose particles are drawn randomly and 
uniformly over the entire pose space.



Monte Carlo Localization Example
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• Correction: use the observation model, Monte Carlo Localization assigns a 
weight to each particle.

• Resampling must be performed after each correction step.

• Solving “where am I?” using particles:



Monte Carlo Localization Example
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• Prediction: use the motion model to sample particles that represent the next 
robot poses. 

• Solving “where am I?” using particles:



Monte Carlo Localization Example
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• Correction: use the observation model, Monte Carlo Localization assigns a 
weight to each particle.

• Resampling must be performed after each correction step.

• Solving “where am I?” using particles:



Monte Carlo Localization Example
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• Repeat the prediction by sampling from the motion model, correction by 
sampling from the observation model, and the resampling procedures.

• Solving “where am I?” using particles:



Monte Carlo Localization Example
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108



109
https://www.youtube.com/watch?v=0XbKZvXt5c4

https://www.youtube.com/watch?v=0XbKZvXt5c4
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https://www.youtube.com/watch?v=-c_0hSjgLYw

https://www.youtube.com/watch?v=-c_0hSjgLYw
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https://www.youtube.com/watch?v=nA-J0510Pxs

https://www.youtube.com/watch?v=nA-J0510Pxs
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