COMPSCI-603: Robotics

Robot Learning



Why Robot Learning?

* Traditional robots were designed
for special purposes, e.g., in
automotive manufacturing:

= Welding, assembly, painting /
sealing / coating, part transfer,
material removal, etc.

e Characteristics:
= Structured environments.

= Specific tasks & procedures.
" Pre-programmed robots.
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Why Robot Learning?

* Programming robots is hard:

= Huge number of possible tasks
that may be changing and new.

]
= Tasks difficulty to describe l
formally. :
&

= Unstructured environments 4— =-m -
potentially in open worlds.

" Humans in the loop.

* Expert engineering may be
impractical.

* Robot learning is one of the most promising solutions.




Definition and Scope

* Robot learning is a subfield in robotics:

» to study techniques allowing a robot to acquire new skills or adapt to its
environment,
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Definition and Scope

* Given the popularity of machine learning, it is safe to say that robot
learning applies machine learning within the robotics community.

 However, the above statement is not 100% accurate.

* Robot learning is in the intersection of:

" Machine learning.

= Adaptive control: automatically adjusts
controller parameters to compensate
for changing process conditions.

* Developmental robotics: studies the
developmental mechanisms, architectures
and constraints that allow lifelong and
open-ended learning of new skills and new
knowledge in embodied machines.

o Can arobot learn like a child?

Robot
Learning

Adaptive
Control




Definition and Scope

* Broader scope of robot learning (defined by |IEEE):
" [earning models of robots, tasks or environments

" [earning deep hierarchies or levels of representations, from sensor and motor
representations to task abstractions

» [earning of plans and control policies by imitation and reinforcement learning
" integrating learning with control architectures

» methods for probabilistic inference from multi-modal sensory information
(e.g., proprioceptive, tactile, vison)

" structured spatio-temporal representations designed for robot learning such
as low-dimensional embedding of movements

* developmental robotics and evolutionary-based learning approaches



https://www.ieee-ras.org/robot-learning

How can a robot learn to perform a task?

Credit: PR2 Robot / Willow Garage



How to teach robot to do a task?

* How to teach a robot to flip pancakes?
* How about teaching a robot to play table tennis with a human?
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Learning from Demonstration

* Learning from demonstration (LfD) is an end-user development
technique for teaching a robot new behaviors by demonstrating the
task to transfer directly instead of programming it through machine
commands.

* Robot LfD started in the 1980s and has grown steadily in importance.

* At the core, LfD is inspired by the way humans learn from being
guided by experts, from infancy through adulthood.

* A large body of work on LfD therefore takes inspiration from concepts
in psychology and biology.

* Nowadays, the vast majority of work on LfD follows a machine
learning approach.
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Learning from Demonstration

A

* LfD is also called:
" Programming by
Demonstration
= |mitation Learning

= Apprenticeship Learning

Reference: Sylvain Calinon and Aude Billard. "Incremental learning of gestures by imitation in a humanoid robot." In Proceedings
of the ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2007. 12
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Learning from Demonstration

* Prior to building capability in robots, we often want to understand
how the equivalent capability works in humans and animals —
biological inspiration:

B i3 Wiag

Rolf Pfeifer, Max Lungarella, and Fumiya lida. "Self-
organization, embodiment, and biologically inspired
robotics." Science, no. 5853, pp. 1088-1093. 2007.
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Biological Inspiration: Human Imitation

* “True” imitation: Ability to learn new actions not part of the usual
repertoire, by humans only, and possibly great apes.

* “True” imitation is differentiated from copying (flocking, schooling,
following), stimulus enhancement, or contagion.

Reference: Whiten & Ham, Advances in the Study of Behaviour, 1992.
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Biological Inspiration: Human Imitation

* Newborns to 3-month infants: Innate facial imitation.

* Imitating tongue and lips protrusion, mouth-opening, head
movements, cheek and brow motion, eye blinking.

e Delayed imitation up to 24 hours.

* Imitation is mediated by a
stored representation.

References:
Meltzoff & Moore, Early Development and Parenting, 1997.
Meltzoff & Moore, Developmental Psychology, 1989.

Slide modified from Prof. Aude Billard
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Biological Inspiration: Human Imitation

* 9-12-month infants: Deferred and delayed imitation of novel
behavior.

* 67% of the infants who saw
the display reproduced the
act after the week's delay,
as compared to 0% of the
control infants who had not
seen the novel display.

Slide modified from Prof. Aude Billard 20



Biological Inspiration: Human Imitation

* 14-month infants: Imitation of new action to achieve the same goal
only if they consider it to be the most rational alternative.

Slide modified from Prof. Aude Billard
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Biological Inspiration: Human Imitation

e 18-month infants:
» Differentiate between human and machine demonstration.
= Learn from unsuccessful examples.
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Reference: Meltzoff, Dev. Psychol. 31, 1995.

Slide modified from Prof. Aude Billard



Biological Inspiration: Human Imitation

e Children:

" Imitation is hierarchical and goal-directed.

= Single-hand motions: accurate ipsilateral imitation,
48% substitution for cross-lateral imitation.

= Two-hand motions: only 10% substitution for
cross-lateral imitation.

= Two-phase motion eliminates mistakes.

= Adding constraints of hand gestures increases
mistakes.




Biological Inspiration: Human Imitation

e Adults:
" I[mitation reaches the highest level of
complexity.
" |mitation is present in all learning
activities.

" I[mitation in adulthood is influenced by
movement observation, handedness,
orientation of the demonstrator.

= Social influence in establishing group
norms, collective frame of reference,
transmission of phobias.
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Biological Inspiration: Human Imitation

* Advantages: When is imitation useful?
" |tis a powerful paradigm of transferring skills to perform tasks.

" |t speeds up the learning process by showing possible solutions or conversely
by showing bad solutions.

* Disadvantages: When is imitation not useful?

" I[nappropriate: When a good solution for the teacher is not a possible solution
for the learner (when not considering adaptation and reinforcement).

* Disadvantageous: When it induces you in error from a bad teacher.

25



FESTO Robotic Bird:


https://www.youtube.com/watch?v=Fg_JcKSHUtQ

Learning from Demonstration

Robotic
Implementation

Reference: Sylvain Calinon and Aude Billard. "Incremental learning of gestures by imitation in a humanoid robot." In Proceedings

of the ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2007.
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Mathematical Background

e 1-D Gaussian (normal) distribution has a characteristic symmetric bell
curve that quickly falls off towards O.
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Mathematical Background

* Multivariate Gaussian distributions in the n-D space N (z|u, ) :

25 \ p('q;'.u‘ﬂ E) — (271')”/2|E|1/2 EXPp {_5 (,I: o ‘U})TE ! (Q{J o )u’)}

p=E(X) ¥ =Cov(X)=E[(X —pu)(X—p7]

* Given a multivariate Gaussian distribution, its marginals, conditionals,
and linear transformations are also Gaussian.
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Mathematical Background

e Gaussians are very common in probability theory and important in
statistics, which are also widely used in machine learning.

* Physical quantities that are expected to be the sum of many
independent processes often have distributions that are nearly
Gaussian (e.g., sensor noise).

e Gaussians are useful because of the central limit theorem:

* Taking sufficiently large independent and identically distributed (i.i.d.)
samples, the distribution of the samples will be approximately normally
distributed.
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Mathematical Background

e Gaussian Mixture Models (GMM)

= A mixture model is a probabilistic model, which assumes the underlying data

belongs to a mixture distribution.
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Mathematical Background

e Gaussian Mixture Models (GMM)
" GMM computes the probability using a mixture of K Gaussians:

Zw:@, CU|,J,,” i where Z?Ui — 1j D i W; i 1
=1

* GMM can generate data points (samples) in two steps:

o Select which component i the data point belongs to according to the
multinomial distribution of (wy, ..., wg).

o Generate the data point according to the probability of the i-th component.

e Gaussian Mixture Regression (GMR)

" Given a GMM, a GMR is used to compute the conditional distribution to
generate data that satisfies certain condition, e.g., p(x;|z_;).
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LfD by GMM and GMR

* In this example, kinesthetic demonstrations (e.g., a sequence of
locations), {t, s}, are provided by holding the robot’s arm to draw.
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LfD by GMM and GMR

e Demonstrations can be modeled as GMMs.
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LfD by GMM and GMR

* GMR is used to retrieve the trajectory, namely the expected position
at each time step:
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LfD by GMM and GMR

* Examples of grasping: HLWRIST g, ¢ GMM GMR
= GMM encodes the trajectory. ‘ -
= GMR retrieves the trajectory.
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* Robustness to perturbations:

0.8

07 \—demo—repro \

0.6r

0.5¢
t
0.4 _

0.3
0.2F

0.1+ perturbation E
-0.5 0 0.5

20 40 80 80 100
t

36



LfD.and RLforLearning Robot Table Tennis: https://www.youtube.com/watch?v=SH3bADiB7uQ



https://www.youtube.com/watch?v=SH3bADiB7uQ

Problems to Implement GMM/GMR-based LfD

* How to provide demonstrations to a robot?

* How to estimate the parameters of a Gaussian or GMM?
» Using data for learning or training computational models

* How to estimate the number of Gaussian component in a GMM?
* Deciding hyperparameter values

* How to align the demonstrated trajectories with different speed?
" Data preprocessing
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Providing Demonstrations

(a) Kinesthetic (b) Teleoperation - (c¢) Observation

. Ease of : :
Demonstration . High DOF Ease of Mapping
Demonstration
Kinesthetic v v
Teleoperation v v
Observation v v
Ravichandar, Harish, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. "Recent advances in robot learning from 39

demonstration." Annual Review of Control, Robotics, and Autonomous Systemes, issue.3, pp.297-330, 2020.



Estimating Parameters

* To estimate parameters of a Gaussian, we may use maximum-
likelihood estimation (MLE) to find the parameters under which the
data is most likely for that model:

" Likelihood function:
p(X|O) = Hp x;|0) = L(O]|X)

* The likelihood is thought of as a function of the parameters ©® where the
data A’ is fixed.

" [n the MLE problem, our goal is to find the ©® that maximizes £ or log of L :

®° = argmax L(O|X)
S
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Estimating Parameters

e Does MLE work for GMMs?

= The answer is no...
= Since the data points are not from the identical Gaussian components.

* To estimate parameters with hidden variables, we may use the classic
Expectation-maximization (EM) algorithm:

= EM is an iterative method to find maximum likelihood estimates of
parameters in statistical models, where the model depends on unobserved
latent variables.

Credit: Victor Lavrenko
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Estimating Parameters

* Given measurements xq, ..., Xp:
» K = 2 components with unknown parameters.

= |f the source of each observation is known, X, +X, ot X,

estimation is trivial. Hy = , '

= b
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2=
n

= |f we know parameters of the Gaussians, we

can estimate which component that each P(b|x )= P(x;|b)P(b)

observation comes from. B P(x, |b)P(b)+ P(x, |a)P(a)
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Estimating Parameters

* With hidden variables, it is a chicken and egg problem:
= We need (g, 62) and (up, 07) to estimate the source of the observations.
= We need to know the source to estimate (ug, 62) and (up,, 7).

* EM algorithm overview:

= Start with randomly initialization of the Gaussians (i, 62) and (up, 7).

= E-step: for each observation x;, compute P(al|x;) and P(b|x;) to estimate
which Gaussian component it comes from.

= M-step: update (u,, 02) and (up, o) of the Gaussians to fit points assigned
to them.

= |[terate until convergence.
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Estimating Hyperparameters

* Broadly, estimating # Gaussian components in GMMs is a
hyperparameter estimation or model selection problem.

* Model Selection: Given different models defined by different hyper-
parameter values, select the best model (i.e., the hyperparameter
resulting in best performance).

* Many methods exist based on different criteria:

" Cross-validation methods: use different portions of the data to train and
validate a model.

* Information-based methods, e.g., Bayesian information criterion (BIC):
balance between likelihood and model complexity.

e Occam’s razor: pick “simplest” of all models that fit.
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Aligning Trajectories

* Trajectory alignment is common when providing demonstrations for
path/motion planning, and other time-series data.

* Dynamic Time Warping (DTW) aligns two sequences by warping the
time axis iteratively until an optimal match between the two
sequences is found.

= DTW is a time series alignment algorithm developed originally for speech
recognition.

= Consider two trajectories (sequences of data points):

_q :'I‘fla 'I‘I':*-l--l--l-d. 'I‘IIE':|-+++:|- 'I‘-fn

{B =I-rla. I-r:a.q--i--i-a. I-r'+++++ I.r

J e

Sakoe,H. and Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. on
Acoust., Speech, and Signal Process., ASSP 26, 43-49 (1978).
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Aligning Trajectories w

1 7 1
m oeoe

* The two sequences are arranged on the sides ..

of a grid, with one on the top and the other °

up the left-hand side.

* Both sequences start on the bottom left of

the grid.

* Inside each cell a distance measure can be : °

placed, comparing the corresponding ®

elements of the two sequences. ®

* To find the best match or alignment between

these two sequences, one need to find a path sequence s |1|@ @)@
through the grid, which minimizes the total
distance between them.
* This shortest path can be found using
dynamic programming.
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Aligning Trajectories

1 3 1 2 1 1 1

1 1 3 1 2 1 1

NN

R R W R N R R
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