
COMPSCI-603: Robotics
Robot Learning

Robot Decision Making and Planning

2

Robot Decision Making and Planning

• Robots need to make various decisions and
construct different plans, for example:
▪ Decision making.

▪ Planning: task planning, motion planning
(e.g., for robotic arms), and path planning
(e.g., for mobile robotics).

3

• Decision making and planning characteristics:
▪ Reactive (one-time) decision making versus sequential planning.

▪ Certain versus uncertain scenarios.

▪ Observable versus partially observable space.

Common Scenarios of Planning

• Deterministic, fully observable:
▪ Agent knows exactly which state it is in.

▪ Agent action is executed as expected.

• Stochastic, partially observable:
▪ Observations provide new information

about current state with uncertainty.

▪ Robot actions may not be successfully
executed.

• Non-observable:
▪ Agent may have no idea where it is.

4

Example: Vacuum World

• Observable:
▪ Start in #5
▪ Actions: [Right; Suck]

• Non-observable:
▪ Start in {1;2;3;4;5;6;7;8}
▪ E.g., action Right goes to {2;4;6;8}
▪ Actions: [Right; Suck; Left; Suck]

• Partially observable:
▪ Start in #5, local sensing only
▪ Stochastic actions, suck can make a clean

carpet dirty
▪ Actions: [Right; if dirt then Suck]

5

Possible actions: left, right, suck

Example: Vacuum World (observable, deterministic actions)

• States: cross product of
robot locations and
dirtiness

• Actions: Left, Right, Suck,
NoOp

• Successor function:
Left/Right changes
location, Suck changes
dirtiness

• Goal: no dirt

• Cost: 1 per action (0 for
NoOp), also called penalty,
utility, or reward

6

Example: Vacuum World (non-observable, deterministic actions)

• Definition of states is
different in the case of
non-observable
vacuum world.

• If actions are
stochastic, action
successor function is
also defined
differently.

7

Planning under Uncertainty

• In unstructured environments, robot decision making and planning
must be performed under uncertainty.
▪ Uncertainty in action outcomes, i.e., stochastic action

▪ Uncertainty in state of knowledge

▪ Any combination of the two

8

Planning under Uncertainty

• Decision tree provides a classic solution to decision making under
uncertainty:

9

Planning under Uncertainty

• Utility (i.e., reward or cost) function associates a real-valued utility with
each state or state-action pair.

• With utilities, we can compute and optimize expected utilities for
planning under uncertainty.

• The expected utility of decision 𝑑 in the state 𝑠 can be defined as:

• The principle of maximum expected utility states that the optimal
decision under uncertainty is the one that has greatest expected utility.

10

Planning via Reinforcement Learning

• Two fundamental problems in sequential decision making:

▪ Planning:
oA model of the environment is known.

oRobots perform planning and decision making using this environment
model.

oRobots do not need interactions with the environment for planning.

▪ Reinforcement Learning:
o The environment is initially unknown.

o The robot interacts with the environment.

o The robot improves its behaviors through the interaction.

11

Reinforcement Learning

• Definition: an area of machine learning inspired by behaviorist
psychology, concerned with how agents seek to take actions in an
environment so as to maximize a cumulative reward.

12

Reinforcement Learning

• Reinforcement learning is based on the reward hypothesis.

• Reward Hypothesis: All goals can be described by the maximization of
expected cumulative reward.
▪ A reward 𝑅𝑡 is a scalar feedback signal.

▪ Indicates how well agent is doing at step 𝑡.

▪ The agent's job is to maximize cumulative reward.

• Actions may have long term consequences; thus reward may be
delayed.
▪ It may be better to sacrifice immediate reward to gain more long-term

reward.

13

Reinforcement Learning

14

• In robotics, learning from demonstration and reinforcement learning
are expected to work together:
• Learning from demonstration provides an initial solution.

• Reinforcement learning further adapt and improve the initial solution.

• Differences from other machine learning
paradigms?
▪ There is no supervisor, only a reward signal.

▪ Feedback is delayed, not instantaneous.

▪ Time really matters (sequential, non i.i.d data).

▪ Agent's actions affect the subsequent data it receives.

15
https://www.youtube.com/watch?v=M-QUkgk3HyE

https://www.youtube.com/watch?v=M-QUkgk3HyE

Agent (Robot) and Environment

• At each step 𝑡, the agent:
▪ Receives observation 𝑂𝑡
▪ Receives scalar reward 𝑅𝑡
▪ Executes action 𝐴𝑡

• The environment:
▪ Receives action 𝐴𝑡
▪ Generates observation 𝑂𝑡+1
▪ Generates scalar reward 𝑅𝑡+1

• 𝑡 increments at environment step

16
Slides modified from Dr. David Silver

History and State

• The history is a sequence of observations, rewards and actions:

▪ It is also called the sensorimotor stream of an agent.

▪ All observable variables (observations and rewards) are up to time 𝑡.

▪ What happens next depends on the history:
o The agent selects actions.

o The environment selects observations and rewards.

• State is the information used to determine the next action, which is
formally defined as a function of the history:

17

𝐻𝑡 = 𝑂1, 𝑅1, 𝐴1, … , 𝑂𝑡−1, 𝑅𝑡−1, 𝐴𝑡−1, 𝑂𝑡, 𝑅𝑡

𝑆𝑡 = 𝑓(𝐻𝑡)

Environment State

• The environment state 𝑆𝑡
𝑒 is the

environment’s private
representation.

• It is used by the environment to
pick the next observation and
reward.

• The environment state 𝑆𝑡
𝑒 is not

usually visible to the agent.

• Even if 𝑆𝑡
𝑒 is visible, it may contain

irrelevant information.

18

Agent State

• The agent state 𝑆𝑡
𝑎 is the agent’s

internal representation.

• It can be used by the agent to
pick the next action.

• It can be computed based on
the history:

19

𝑆𝑡
𝑎 = 𝑓(𝐻𝑡)

Information State

• An information state (a.k.a., Markov state) contains all useful and
relevant information from the history.

▪ “The future is independent of the past given the present.”

▪ The state is a sufficient statistic of the future.

20

Fully Observable Environment

• Full observability: agent directly
observe state:

• Information state = observation.

• Each state must be unique.

• In this case, agent-environment
interaction can be formally
modeled with a Markov Decision
Process (MDP).

21

Markov Property

• Markov Property: The future is independent of the past given the
present.

▪ The current state captures all relevant information from the history.

▪ Once the current state is known, the history can be thrown away.

22

State Transition

• For a Markov state 𝑠 and successor state 𝑠’, the state transition
probability is defined by:

• State transition matrix defines transition probabilities from all state
to all successor state, where each row sums to 1.

23

Markov Process

• A Markov process is a memoryless random process, i.e., a sequence
of states 𝑆1, 𝑆2, ⋯ 𝑆𝑡 with the Markov property.

24

Markov Process: Example

25

• Episodes sampled from the Markov
Process starting from C1 to Sleep:
▪ C1 C2 C3 Pass Sleep

▪ C1 FB FB C1 C2 Sleep

▪ C1 C2 C3 Pub C2 C3 Pass Sleep

▪ C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2
C3 Pub C2 Sleep

Markov Reward Process

• A Markov reward process is a Markov chain of states with a reward
value associated with each state.

26

Markov Reward Process: Example

27

Markov Decision Process

• A Markov decision process (MDP) is a Markov reward process with
actions that transit the agent among states.

28

Markov Decision Process: Example

29

• In this example, actions
are deterministic.

Markov Decision Process: Drag Racing Example

30
Image modified from http://ai.berkeley.edu

• MDP can also model stochastic actions:

MDP and Reinforcement Learning

• A Markov decision process (MDP) formally describes an agent-
environment interaction for reinforcement learning (RL):
▪ MDPs assume that the environment is fully observable.

o The current state completely characterizes the process.

▪ Most RL problems can be formulated under MDPs, for example:
o Adaptive control primarily deals with continuous MDPs.

o Partially observable problems can be converted into MDPs.

• An RL approach may include several components:
▪ Policy: a function that determines agent actions.

▪ Value function: how good each state is.

▪ Model: agent’s representation of the environment.

31

RL Components

• Policy

▪ A policy fully defines the action of an agent in each state.

▪ MDP policies depend on the current state only (not on the history).

▪ Policies are stationary (time-independent):

▪ Policies can be deterministic (and greedy):
or stochastic:

32

RL Components

• Value Function
▪ Value function is a prediction of the overall future reward.

▪ It is used to evaluate the goodness or badness of each state.

▪ It is then used to select the action given each state.

• Model
▪ A model represents the environment and predicts what it will do next.

o The state transition matrix predicts the next state:

o The reward function predicts the next immediate reward:

33

RL Components: Example

34

RL Components: Example

35

Policy Value Function

RL Components: Example

• The model uses the grid map
to represent the state
transition .

• Numbers encode immediate
reward from each state
(same for all actions)

• The model may be imperfect.

36

Model-Based and Model-Free RL

• Model-based RL
▪ Learn a model from experience.

▪ Compute a value function (and/or
policy) from model.

37

Model-based RL Model-free RL

• Model-free RL
▪ No model.

▪ Learn a value function (and/or
policy) from experience.

Q-Learning

• We’re going to learn a model-free RL (although knowing a model also
works).

• We will focus on finding a way to directly estimate a quality function
that is associated with both states and actions.
▪ This function is not necessary to directly associate with the world and

represent the world.

• This quality function is called the Q-function.
▪ A recursive way to approximate the goodness/badness of a state-action pair.
▪ Q-function is like value functions, but it considers both states and actions.

• The process of estimating the Q-function is called Q-learning.
▪ Q-learning integrates learning and planning.

38

Q-Learning

• Given a sequence of states, actions, and rewards defined by an MDP:

we define a unit experience as .

• At each step s, choose action a that maximizes the Q-function Q(s, a).
▪ Q is the estimated quality function.

▪ It tells us how good an action is for a state.

▪ Q(s, a) = immediate reward for taking an action + discounted best Q-value
from the resulting future states.

39

Q-Learning: Mathematical Formulation

• Q-function has a recursive formulation:

• Q-learning estimates the table of Q-values, called Q-table, which
updates Q-values related to the state-action pairs that are visited.

40

Q-Learning: Algorithm

• The Q-Learning algorithm is recursive, using the unit experience:

41

Open Discussion

• How to define States
and Actions so that we
can use Q-learning to
enable autonomous
navigation (e.g.,
obstacle avoidance and
wall following) for a
mobile robot equipping
a 2D LiDAR?

42

Image credit: link

https://www.mdpi.com/1424-8220/23/5/2534

Open Discussion

Reference:

Moreno, D.L., Regueiro,
C.V., Iglesias, R. and Barro,
S., 2004. Using prior
knowledge to improve
reinforcement learning in
mobile robotics. Proc.
Towards Autonomous
Robotics Systems. Univ. of
Essex, UK.

43

44

Q-Learning: Example

45

Q-Learning: Example

46

Q-Learning: Example

47

Q-Learning: Example

48

Q-Learning: Example

49

Q-Learning: Example

50

Q-Learning: Example

51

Q-Learning: Example

52

Q-Learning: Example
New Episode

Episode: agent-environment interactions from initial to final states.

53

Q-Learning: Example

54

Q-Learning: Example

55

Q-Learning: Example

Q-Learning: Algorithm

• Two problems:

56

(Greedy action selection)

(Complete overwriting
old Q values)

Action Selection by 𝜺-greedy Policies

• The 𝜀-greedy policy is widely used to choose an action given a state:

• The value of 𝜀 determines the exploration-exploitation of the agent.
▪ A larger 𝜀 results in more exploration and less exploitation.
▪ As a rule of thumb, 𝜀 is usually chosen to be close to 1 and decreased over time.

57

𝜺-greedy policy:

1. Generate a random number 𝑟 ∈ [0,1]
2. If 𝑟 > 𝜀, choose an action derived from the Q values

(which yields the maximum reward)

3. Else, choose a random action

Temporal Difference Update

• Temporal Difference (TD) algorithms enable the agent to
incrementally update its Q-table through every single action it takes.

▪ The value Target-OldEstimate is called the target error.

▪ StepSize is called learning rate, with a value between 0 and 1; 1 means
completely overwrites the old Q value.

• With the temporal difference update, Q-learning becomes:

58

Temporal Difference Update

• Q-Learning is an off-policy learning algorithm, because:
▪ It directly finds the optimal Q-value without any dependency on the policy

being followed (due to the maximization operation).

59

Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8

60

Q-Learning: A Visual Demonstration

SARSA

• SARSA is acronym for State-Action-Reward-State-Action.

• SARSA is an on-policy TD learning algorithm, because:
▪ It evaluates and improves the same policy that is being used to select actions.

61
Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7

62
Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7

Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8

63
https://www.youtube.com/watch?v=bxtPyJqVrmk

https://www.youtube.com/watch?v=bxtPyJqVrmk

Difficulties of RL on Real Robots

• When the number of states and actions becomes larger, the Q-table
becomes intractable, and Q-learning easily suffers from the curse of
dimensionality:
▪ The amount of memory required to save and update the Q-table would

increase as the number of states and actions increases.

▪ The amount of time required to explore each state to create the required
Q-table would be unrealistic.

• Design of states, actions, and rewards is not trivial in real-world
robotics applications:
▪ States/actions are typically continuous variables in robotics applications.

▪ Reward definition often requires significant expert or domain knowledge.

64

Difficulties of RL on Real Robots

• RL algorithms are
notoriously difficult to
train for real robots.
▪ Sample efficiency and

operation safety.

▪ Convergence and
reliability due to huge
exploration space.

▪ Sim-to-real gaps.

▪ Generalizability to
changes in the
environment and robot
configurations.

65

https://www.youtube.com/watch?v=iaF43Ze1oeI

https://www.youtube.com/watch?v=iaF43Ze1oeI

	Slide 1: COMPSCI-603: Robotics
	Slide 2: Robot Decision Making and Planning
	Slide 3: Robot Decision Making and Planning
	Slide 4: Common Scenarios of Planning
	Slide 5: Example: Vacuum World
	Slide 6: Example: Vacuum World (observable, deterministic actions)
	Slide 7: Example: Vacuum World (non-observable, deterministic actions)
	Slide 8: Planning under Uncertainty
	Slide 9: Planning under Uncertainty
	Slide 10: Planning under Uncertainty
	Slide 11: Planning via Reinforcement Learning
	Slide 12: Reinforcement Learning
	Slide 13: Reinforcement Learning
	Slide 14: Reinforcement Learning
	Slide 15
	Slide 16: Agent (Robot) and Environment
	Slide 17: History and State
	Slide 18: Environment State
	Slide 19: Agent State
	Slide 20: Information State
	Slide 21: Fully Observable Environment
	Slide 22: Markov Property
	Slide 23: State Transition
	Slide 24: Markov Process
	Slide 25: Markov Process: Example
	Slide 26: Markov Reward Process
	Slide 27: Markov Reward Process: Example
	Slide 28: Markov Decision Process
	Slide 29: Markov Decision Process: Example
	Slide 30: Markov Decision Process: Drag Racing Example
	Slide 31: MDP and Reinforcement Learning
	Slide 32: RL Components
	Slide 33: RL Components
	Slide 34: RL Components: Example
	Slide 35: RL Components: Example
	Slide 36: RL Components: Example
	Slide 37: Model-Based and Model-Free RL
	Slide 38: Q-Learning
	Slide 39: Q-Learning
	Slide 40: Q-Learning: Mathematical Formulation
	Slide 41: Q-Learning: Algorithm
	Slide 42: Open Discussion
	Slide 43: Open Discussion
	Slide 44: Q-Learning: Example
	Slide 45: Q-Learning: Example
	Slide 46: Q-Learning: Example
	Slide 47: Q-Learning: Example
	Slide 48: Q-Learning: Example
	Slide 49: Q-Learning: Example
	Slide 50: Q-Learning: Example
	Slide 51: Q-Learning: Example
	Slide 52: Q-Learning: Example
	Slide 53: Q-Learning: Example
	Slide 54: Q-Learning: Example
	Slide 55: Q-Learning: Example
	Slide 56: Q-Learning: Algorithm
	Slide 57: Action Selection by bold italic script epsilon-greedy Policies
	Slide 58: Temporal Difference Update
	Slide 59: Temporal Difference Update
	Slide 60: Q-Learning: A Visual Demonstration
	Slide 61: SARSA
	Slide 62
	Slide 63
	Slide 64: Difficulties of RL on Real Robots
	Slide 65: Difficulties of RL on Real Robots

