
COMPSCI-603: Robotics
Bayes Filters

Partial slide courtesy by C. Stachniss, J. Biswas, and L. Parker

Localization: Where Am I?

2

Localization and Navigation

• How to navigate between A and B?
▪ Possible by always following the left wall,

▪ But how to detect that the goal is reached?

• Localization is typically a necessary component for robot
navigation:
▪ A robot must identify

whether it reaches the
goal position.

▪ A robot often needs to
know its location for
path planning.

3

Types of Robot Localization

• “Position tracking” – figure out where the robot is, given that we
know where the robot started.
▪ Solutions: Odometry, dead reckoning, etc.

• “Global” localization – figure out where the robot is, but we don’t
know where the robot started.
▪ Solution: GPS, place recognition, etc.

• “Kidnapped robot” – robot is moved by external agent to any
arbitrary location.
▪ It is more difficult than the global localization problems, in that the robot

might believe it knows where it is while it does not.

▪ Solution: GPS, place recognition, etc.

4

Challenges of Robot Localization

• Absolute position (e.g., GPS) may be
unavailable, unreliable, and in many
situations, insufficient.

• Sensors are always noisy and may
provide irrelevant information, which
may be caused by
▪ Environment properties, e.g., mirror

reflection or reflective floor surface.

▪ Environment changes, e.g., weather,
seasonal changes, earthquake, etc.

▪ Interference between sensors, e.g.,
ultrasonic sensors, structured-light sensors.

5

Challenges of Robot Localization

• Perceptual/Sensing Aliasing
▪ In robots, non-uniqueness of sensors readings is the norm.

▪ Even assuming sensor readings are perfect, robot localization still suffers from
the challenge of perceptual aliasing:
o different places generate a similar visual (or, in general, perceptual) footprint.

6

Odometry and Dead Reckoning

• These methods update robot
position and orientation based on
proprioceptive sensors.
▪ Odometry: wheel sensors only

▪ Dead reckoning: also heading sensors
(e.g., gyroscope or compass)

• Pros: Straight forward, easy.

• Cons Errors are unbounded.
▪ Limited sensing resolution.

▪ Misalignment of motors (e.g., wheels).

▪ Unequal floor contact (e.g., slipping).

7

Place Recognition

• Place recognition aims to identify a place using a map, or templates of
places that were previously visited by the robot.

• Landmark-based place recognition is commonly used by humans for
localization.

• Pros: Intuitive

• Cons: Easily to suffer
from perceptual
aliasing and
environment
changes.

8

Same
location?

Pre-disaster Post-disaster

Types of Robot Localization

• “Position tracking” – figure out where the robot is, given that we
know where the robot started.
▪ Solutions: Odometry, dead reckoning, etc.

• “Global” localization – figure out where the robot is, but we don’t
know where the robot started.
▪ Solution: GPS, place recognition, etc.

• “Kidnapped robot” – robot is moved by external agent to any
arbitrary location.
▪ Solution: GPS, place recognition, etc.

9

Probability Rules and Bayes Theorem

10

Refresher on Probability Rules and Bayes Theorem

11

• Discrete Probabilities:

Slides modified from Prof. Joydeep Biswas

Refresher on Probability Rules and Bayes Theorem

• If 𝑥 takes on continuous values, 𝑝(𝑥) is not a probability, it is the
probability density.

• Asking "what is the probability of 𝑥 = <some specific value>" has no
meaning (the most appropriate answer is 0).
▪ E.g., if we assume that the tip of a dart is a point, the probability for the dart

to land at a specific point on a broad is 0.

• An appropriate question is "what is the probability of 𝑥 in <some
continuous range>":

12

Refresher on Probability Rules and Bayes Theorem

• Conditions:

▪ Often colloquially read as "probability of 𝑥 given 𝑦“, e.g., probability that the
robot is at position 𝑥 given the sensor input 𝑦.

▪ But this is not quite right!

▪ It also does not mean we know the "value" of 𝑦 as 𝑝(𝑦) is still a distribution!

▪ Better way to think about it: If we know nothing about 𝑝(𝑦), then 𝑝(𝑥) is the
best we can infer about 𝑥. However, if we do know that 𝑦 has a distribution
𝑝(𝑦), then 𝑝(𝑥|𝑦) is a more informative distribution: it is the distribution of 𝑥
if 𝑦 has the distribution 𝑝(𝑦).

13

Refresher on Probability Rules and Bayes Theorem

• From discrete to continuous random variables:

14

Discrete Continuous

Refresher on Probability Rules and Bayes Theorem

• There are two operations we often would like to perform, for a
distribution 𝑝(𝑥):
▪ Sample a random value: 𝑥~𝑝(𝑥)

▪ Evaluate the probability density at a particular value: 𝑝(𝑥)|𝑥=𝑥0
. It is the limit

of the probability of the interval (𝑥, 𝑥 + Δ] divided by the length of the
interval as the length of the interval goes to 0.

• For a conditional distribution 𝑝 𝑥 𝑦 when 𝑦 = 𝑦0:
▪ Sample a random value: 𝑥~𝑝 𝑥 𝑦 |𝑦=𝑦0

▪ Evaluate the probability density at a particular value: 𝑝(𝑥|𝑦)|𝑥=𝑥0,𝑦=𝑦0
.

15

Refresher on Probability Rules and Bayes Theorem

• Bayes Rule

16

Bayesian State Estimation

17

Chapter 2.4, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.

The “Belief”

• Belief (in robotics) is defined as the distribution of the robot's state
estimates:

• Characteristics:
▪ Belief is a Probability Density Function (pdf).

▪ It accounts for all data observed so far from time step 1 to t.

▪ “Optimal” estimate is still a pdf.

18

𝑥 : state (e.g., robot location)
𝑢 : control
𝑠 : sensing observations

Belief State Estimation

• In robotics, State Estimation is the field that deals with the challenge
of using on-board sensors to estimate the state, such as position and
orientation, of a robot as it moves through the world.

• Belief State Estimation uses belief to represent the distribution of
state estimates.

• Variations of the belief state estimation
are based on:
▪ Sensing (e.g., place recognition)

▪ Control (e.g., odometry)

▪ Availability of prior state distribution

▪ Prior data (e.g., map)

19

State Estimation

• Given inputs:
▪ Motion model / state transition:

▪ Sensor model / observation model :

• Wanted output to compute:

• Note:

▪ These are functions of all the variables, not just the first

▪ In the state estimation algorithm, we will evaluate them at specific values

20

Motion Model

• Motion model is mathematically defined as:

• It predicts how likely for the robot to go from a previous location to
the next location based on control (or odometry).

• Variations of motion models:
▪ 𝑢 is based entirely on motion commands sent (velocity).

▪ 𝑢 is from encoder measurements (odometry).

▪ 𝑢 is from IMU (accelerometer & gyroscope) measurements.

▪ No 𝑢: state estimation of an agent not under our control, e.g., a pedestrian.

21

Sensor Model

• Sensor model / observation model:

• It predicts:
▪ What the robot expects to observe at a given 𝑥 (given an optional domain-

specific prior data 𝐷, like the map), and

▪ Based on the sensor noise model, how likely to observe a specific value of 𝑠.

• Factors that contribute to the sensor model:
▪ Sensor noise model

▪ Sensor limitations (e.g., range, resolution)

▪ Environmental / domain factors (e.g., moving obstacles, surface parameters)

▪ Other random errors

22

Markov State Estimation

● Markov property: Past
observations/states are independent
of future observations/states given
the current observations/states.
▪ Observations are Markov: given state 𝑥𝑡 at

time 𝑡, observation 𝑠𝑡 is independent of all
past states and observations.

▪ States are Markov: given state 𝑥𝑡 at time 𝑡
and control 𝑢𝑡+1 at time 𝑡 + 1, state 𝑥 at
time 𝑡 + 1 is independent of all other past
states and observations.

23

● Markov state estimation can be mathematically formulated with a
dynamic Bayesian network.

Derivation: Recursive Belief Update

• Goal: Given the belief at 𝑡, the motion model, and the sensor model,
represent the belief at time 𝑡 + 1 as a function of the belief at 𝑡.

• Recall: conditional are preserved
in Bayes rule:

24

Derivation: Recursive Belief Update

25

Bayes' rule to account for
the sensor model

Derivation: Recursive Belief Update

26

Introducing term from previous
time-step using marginalization

Markov assumption

Bayes' rule to account for
the sensor model

Derivation: Recursive Belief Update

27

Markov assumption

Introducing term from previous
time-step using marginalization

Markov assumption

Bayes' rule to account for
the sensor model

Recursive Belief Update

• Given the previous belief, the update requires integration over all
possible states.

• Note the proportion sign: a re-normalization is required after each
recursive belief update, because belief is a distribution.

28

Bayesian Markov State Estimation

• Given belief ,
▪ If a motion model (e.g., odometry) is available, predict as

▪ If a sensor model (e.g., using LiDAR/camera data) is available, update as

• One step can be repeatedly applied when the other is not available.

• Most real robotics applications have both.

29

"Predict/estimate"

“Correct/update"

Markov Localization

30

Chapter 7.3-7.4, Sebastian Thrun, Wolfram Burgard and Dieter
Fox. “Probabilistic Robotics.” MIT Press. 2005.

Markov Localization

• Markov localization is a classic solution to address probabilistic, map-
based localization.

• Consider a mobile robot moving in a known environment:
▪ As it starts to move (e.g., from a precisely known location), it might keep track

of its location using odometry.

▪ However, after a certain movement the robot will get very uncertain about its
position. Then the robot will need to update its position using an observation
of the environment.

• Odometry information leads to an estimate of the robot’s position,
which can then be fused with the sensor observations to get the best
possible update of the robot’s actual position.

31

Markov Localization

• Markov localization uses an explicit, discrete representation of the
positions as states.

• This is usually done by representing the environment by a grid or a
topological graph with a finite number of possible states (positions).

32

Image Credit: G. Gemignani

Markov Localization

• Key idea: compute a discrete probability distribution over all possible
states (positions) in the environment.
▪ Each value in this distribution

represents the probability that
the robot is in a particular location.

▪ Markov localization recursively
maintains the estimates of the
positions.

▪ During each update, the
probability for each position
of the entire space is updated.

33

Markov Localization: Example

• The robot doesn’t know where it is. Thus, a reasonable initial believe
of its position is a uniform distribution.

34

Markov Localization: Example

• A sensor reading is made (depending on a sensor model) indicating a
door at certain locations (using a map).

• The sensor reading is used to update the belief (using Bayes theorem).

35

𝐩(𝐬|𝐱)

Markov Localization: Example

• The robot is moving, which adds noise.

• The robot then can estimate its new belief (using a motion model).

36

Markov Localization: Example

• A sensor reading is made (using a sensor model) indicating a door at
certain locations (using a map).

• The sensor reading is used to update the belief (using Bayes theorem).

37

𝐩(𝐬|𝐱)

Markov Localization: Example

• Repeat the estimation/prediction and correction/update.

38

Markov Localization: Example

• Markov localization uses discrete beliefs
▪ Histogram can be used as a non-parametric

model to approximate a distribution

39

𝐩(𝐬|𝐱)

𝐩(𝐬|𝐱)

Motion Model

40

Chapter 5, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.

Robot Motion

• Robot motion is inherently uncertain.

• How can we model this uncertainty?

41

Motion Model

42

• Motion model specifies a posterior probability that action 𝑢 carries
the robot from 𝑥𝑡−1 to 𝑥𝑡.

Coordinate Systems

• In 3D space, the pose of a robot can be described by six parameters:
▪ Three-dimensional Cartesian coordinates

▪ Three Euler angles pitch, roll, and yaw

• In the lecture, we consider
robots operating on a
planar surface.

• The state space of such
coordinate system is
three-dimensional (𝑥, 𝑦, 𝜃)

43

Typical Motion Models

• Two motion models are often used in practice:
▪ Odometry-based

▪ Velocity-based

• Odometry-based models are used when systems are equipped with
wheel encoders (or IMU).
▪ They calculate the new pose based on encoder (or IMU) values.

• Velocity-based models are used when no wheel encoders (or IMU
measurements) are given.
▪ They calculate the new pose based on the velocities and the time elapsed.

• We will focus on the odometry-based motion models.

44

Wheel Encoder Examples

• Typically, these modules require +xV and GND to power them, and
provide a 0 to xV output. They provide +xV output when they see a gap,
and a 0V output when they do not see a gap.

45

Odometry-based Motion Model

• Robot moves from to

46

How can a robot move from one pose to another pose?

Odometry-based Motion Model

• Robot moves from to

• Odometry information

47
Rotation Translation Rotation (RTR) model

Odometry-based Motion Model

• Robot moves from to

• Odometry information

48
Rotation Translation Rotation (RTR) model

The atan2 Function

• Extends the inverse tangent (or arctangent)
and correctly copes with the signs of x and y.

49

Uncertainty in Motion (of Wheeled Robots)

50

and many more …

Noise Model for Odometry

• The measured motion is given by the true motion corrupted with noise.

1. One way to model the noise is to simply center a Gaussian noise in
the pose only, but this cannot model the reality well.

2. For the RTR model, the noise is introduced by any rotation and
translation motions.

• Why are these two methods different?

51

+ Gaussian noise
+ Gaussian noise

+ Gaussian noise

Noise Model for Odometry

52

+ Gaussian noise
+ Gaussian noise

+ Gaussian noise

Recall: Gaussian Distribution to Model Noise

53
What is the label of the y-axis?

Calculating the Probability Density (Zero-Centered)

• For a Gaussian/normal distribution:

54

a: query point
b: std. deviation

Calculating the Posterior

55

x: pose or state
u: control

What the odometry u tells us

What we compute from the input x and x’

This posterior answers: what is the probability density of seeing x’, given x and u under RTR?

Uncertainty Propagation in Motion Models

• Repeated application of the motion model for short movements, we
typically obtain banana-shaped distributions

56

Sampling from a Gaussian Distribution

• Sampling from a Gaussian distribution:

57

Source and examples: https://bjlkeng.github.io/posts/sampling-from-
a-normal-distribution

Central limit theorem:

https://bjlkeng.github.io/posts/sampling-from-a-normal-distribution
https://bjlkeng.github.io/posts/sampling-from-a-normal-distribution

Sampling from Odometry Motion Model

58

Example of Sampling from Motion Model

59

Example of Sampling from Motion Model

60

Sensor Model

61

Chapter 6, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.

Sensor Model

62

• Sensor model (observation model, measurement model) specifies a
probability distribution of receiving observation 𝑧𝑡 when the robot is
in state 𝑥𝑡:

Beam-based Model

• Beam-based models can be used to model range-based sensors.

63

Sonar sensors Laser sensors

Beam-based Model

• Scan 𝑧 at time step 𝑡 consists of 𝐾 measurements.

• Individual measurements are independent given the robot position.

64

𝑚: a known map

Range Sensor Measurements and Noise

65

Ray-Casting Model

• Ray-casting model considers the first obstacle along the line of sight.

• Simplest noise modeling: Gaussian noise in the measured distance.

66

Ray-Casting Model

• More realistic ray-casting model includes a mixture of four models.

• It considers dynamic objects, randomness, max rage, and noise.

67

Ray-Casting Proximity Model

68

Measurement noise Max range

Ray-Casting Proximity Model

69

Unexpected obstacles Randomness

Ray-Casting Proximity Model

70

Measurement noise Max range

Unexpected obstacles Randomness

Examples: Raw Data

71

Sonar sensors (old) Laser sensors

• Measured distances for expected distance of 300 cm.

• Parameters can be estimated using Maximum Likelihood Estimation (MLE).

Examples: Approximation Results

72

Sonar sensors Laser sensors

Examples

73

Beam-Endpoint Model

• Pure Beam-Based Model is
▪ not smooth for small obstacles and at edges.

▪ not easy and efficient to compute.

• Idea for Beam-Endpoint Model to solve this:
▪ Instead of following along the beam, just check the end point (of the beam).

▪ Simple version: whether there is an obstacle at the end point.

▪ More sophisticated version: what is the distance from the end point to the
nearest obstacle.

74

Likelihood Field Model

1. Given the robot’s location and the
(penetrating) beam, compute the
location of the beam end .

2. Compute the Euclidean distance 𝑑𝑖𝑠𝑡
between the end point and the end
point’s nearest object in map 𝑚.

3. The probability of a LiDAR sensor
measurement is given by a zero-
centered Gaussian:

75

Likelihood Field Model

76

• The distance at each point to the nearest
obstacle can be pre-computed, and
stored into a distance matrix or field as a
lookup table.

• The value at each point in this field
indicates the distance to the nearest
obstacle:
▪ Brute force calculation

▪ Distance transformation (from CV)

▪ Brushfire algorithm (from planning)

Likelihood Field Model

77

• The distance matrix or field can be saved as an image, which can also be
corrupted by Gaussian noise centered at each point.

• The brighter a location:
▪ The closer it is to the

nearest obstacle.

▪ The more likely it is to
measure an obstacle with
a range finder.

Likelihood Field Model

78

Likelihood Field Model

79

• The density of a beam-based model can be obtained by intersecting
(and normalizing) the likelihood field by the sensor axis (e.g., indicated by
the dashed line)

Likelihood Field Model

• So far, we only considered the measurement noise model.

• Two other components: maximum range , and randomness .

80

Measurement only Full model

Do we need to consider the unexpected obstacle model?

Likelihood Field Model

81

Multiply the individual values of

If the sensor reading is a max range reading, ignore it

Compute end
point location

Check lookup
table (dist matrix)

Compute
probability density

• Given robot pose 𝑥 and LiDAR reading 𝒛 with 𝑘 beams, compute 𝑝 𝒛 𝑥 :

Summary and an Open Discussion

82

• Robot coordinate frame

• Odometry from proprioceptive sensors

Calculating the Posterior Using Motion Model

83

x: pose or state
u: control

What the odometry u tells us

What we compute from the input x and x’

This posterior answers: what is the probability density of seeing x’, given x and u under RTR?

Sampling from Odometry Motion Model

84

Likelihood Field Model

85

Multiply the individual values of

If the sensor reading is a max range reading, ignore it

Compute end
point location

Check lookup
table (dist matrix)

Compute
probability density

• Given robot pose 𝑥 and LiDAR reading 𝒛 with 𝑘 beams, compute 𝑝 𝒛 𝑥 :

Particle Filters

86

Chapter 4.2, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.

Particle Filter

• Definition:
▪ Particle filter is a Bayesian filter that samples the whole hypothesis space by a

weight function derived from the previous belief (and motion/sensor models).

▪ Particle filter is a Monte Carlo method – a computational method that relies on
sampling to obtain numerical results.

• In robot localization,
▪ Particle filter is used to estimate robot poses that are non-Gaussian and non-

linear in general.

▪ Samples or “particles” are used to represent state hypothesis (i.e., poses) and
belief (as a distribution).

▪ Particle filter updates its belief through survival of the fittest particles (best fit
to sensor observations).

87

Weighted Samples

• Goal: dealing with arbitrary distributions using a smaller number of
samples, or particles in the context of particle filters.

88
Frequency-based particles

Weighted Samples

• Key idea: multiple weighted particles to represent an arbitrary
distribution with a smaller number of particles.

89
Weighted particles

Particle Set

• Set of weighted particles:

• The particles represent the posterior

state
hypothesis

importance
weight

Delta (or Dirac) function

90

Particles for Approximation

• We know that particles can be used to approximate a PDF.

• But how to draw particles form a distribution?

91

Closed Form Sampling

• Closed form sampling is only possible for a few distributions.

• Sampling from a Gaussian distribution:

92

How to sample from other or arbitrary distributions?

Importance Sampling Principle

• We can use a different distribution 𝑔 to generate samples from 𝑓.

• Target distribution 𝑓 (blue).

• Proposal distribution 𝑔 (red).

• Pre-condition:

 𝑓 𝑥 > 0 → 𝑔(𝑥) > 0

• Account for the “differences
between 𝑔 and 𝑓 ” using a
weight 𝑤 = 𝑓(𝑥) / 𝑔(𝑥) at a
particular 𝑥.

93

𝑓

𝑔

Importance Sampling Principle

• Draw particles from 𝑔.

• Compute weight for
each particle:
▪ In the figure, the taller

the particle is, the higher
weight the particle has.

• Use the weighted particles
to represent 𝑓.

94

𝑓

𝑔

Particle Filter for Bayesian State Estimation

• Particle filter is a non-parametric method to implement a recursive
Bayes filter:
▪ when distributions are not Gaussian.

▪ (often) when models are non-linear, e.g., motion models.

• The more particles we use, the better is the estimate.

• Prediction <-> drawing from the proposal.

• Correction <-> weighting by the ratio of target and proposal.

95

𝑥 : state (e.g., pose)
𝑢 : control
𝑧 : observation

Prediction:

Correction:

Particle Filter Algorithm

1. Sample particles using the proposal distribution:

2. Compute the importance weights:

3. Resampling: Draw sample 𝑖 with probability and repeat 𝐽 times:
▪ The newly sampled particles have equal weight.
▪ This allows us to convert the weighted particles to frequency-based particles

to represent the same distribution.

96

The proposal distribution is
user defined. Then the math
equation of the weight must
be manually derived.
It is a design question!

Particle Filter Algorithm

97

𝑥 : state (e.g., pose)
𝑢 : control (e.g., odometry)
𝑧 : observation (e.g., from LiDAR)
X : temporary particle set
X : particle set after resampling
P : proposal distribution
𝑝 : target distribution

Monte Carlo Localization

• As particle filter is a Monte Carlo
method, robot localization using
particle filters is also called
Monte Carlo Localization.

98

• Proposal is the motion model:

• Correction via the observation
model to compute weights:

Monte Carlo Localization

99

Resampling

• Draw sample 𝑖 with probability , repeat 𝐽 times.

• Informally: “Replace unlikely samples by more likely ones”

• Survival of the fittest

• “Trick” to avoid that many samples cover unlikely states

• Needed as we have a limited number of samples

100

Resampling

101

• Roulette wheel with 𝑛 bins
• Brute force 𝑂 𝑛𝐽 , or

binary search 𝑂(𝑛𝑙𝑜𝑔𝐽)

• Stochastic universal sampling
• Also called low variance sampling
• Complexity: 𝑂(𝑛)

𝐽 arms

Monte Carlo Localization Example

• Solving “where am I?” using particles:

102

• Initialization: (in the first step) robot pose particles are drawn randomly and
uniformly over the entire pose space.

Monte Carlo Localization Example

103

• Correction: use the observation model, Monte Carlo Localization assigns a
weight to each particle.

• Resampling must be performed after each correction step.

• Solving “where am I?” using particles:

Monte Carlo Localization Example

104

• Prediction: use the motion model to sample particles that represent the next
robot poses.

• Solving “where am I?” using particles:

Monte Carlo Localization Example

105

• Correction: use the observation model, Monte Carlo Localization assigns a
weight to each particle.

• Resampling must be performed after each correction step.

• Solving “where am I?” using particles:

Monte Carlo Localization Example

106

• Repeat the prediction by sampling from the motion model, correction by
sampling from the observation model, and the resampling procedures.

• Solving “where am I?” using particles:

Monte Carlo Localization Example

107

108

109
https://www.youtube.com/watch?v=0XbKZvXt5c4

https://www.youtube.com/watch?v=0XbKZvXt5c4

110
https://www.youtube.com/watch?v=-c_0hSjgLYw

https://www.youtube.com/watch?v=-c_0hSjgLYw

111
https://www.youtube.com/watch?v=nA-J0510Pxs

https://www.youtube.com/watch?v=nA-J0510Pxs

	Slide 1: COMPSCI-603: Robotics
	Slide 2: Localization: Where Am I?
	Slide 3: Localization and Navigation
	Slide 4: Types of Robot Localization
	Slide 5: Challenges of Robot Localization
	Slide 6: Challenges of Robot Localization
	Slide 7: Odometry and Dead Reckoning
	Slide 8: Place Recognition
	Slide 9: Types of Robot Localization
	Slide 10
	Slide 11: Refresher on Probability Rules and Bayes Theorem
	Slide 12: Refresher on Probability Rules and Bayes Theorem
	Slide 13: Refresher on Probability Rules and Bayes Theorem
	Slide 14: Refresher on Probability Rules and Bayes Theorem
	Slide 15: Refresher on Probability Rules and Bayes Theorem
	Slide 16: Refresher on Probability Rules and Bayes Theorem
	Slide 17
	Slide 18: The “Belief”
	Slide 19: Belief State Estimation
	Slide 20: State Estimation
	Slide 21: Motion Model
	Slide 22: Sensor Model
	Slide 23: Markov State Estimation
	Slide 24: Derivation: Recursive Belief Update
	Slide 25: Derivation: Recursive Belief Update
	Slide 26: Derivation: Recursive Belief Update
	Slide 27: Derivation: Recursive Belief Update
	Slide 28: Recursive Belief Update
	Slide 29: Bayesian Markov State Estimation
	Slide 30
	Slide 31: Markov Localization
	Slide 32: Markov Localization
	Slide 33: Markov Localization
	Slide 34: Markov Localization: Example
	Slide 35: Markov Localization: Example
	Slide 36: Markov Localization: Example
	Slide 37: Markov Localization: Example
	Slide 38: Markov Localization: Example
	Slide 39: Markov Localization: Example
	Slide 40
	Slide 41: Robot Motion
	Slide 42: Motion Model
	Slide 43: Coordinate Systems
	Slide 44: Typical Motion Models
	Slide 45: Wheel Encoder Examples
	Slide 46: Odometry-based Motion Model
	Slide 47: Odometry-based Motion Model
	Slide 48: Odometry-based Motion Model
	Slide 49: The atan2 Function
	Slide 50: Uncertainty in Motion (of Wheeled Robots)
	Slide 51: Noise Model for Odometry
	Slide 52: Noise Model for Odometry
	Slide 53: Recall: Gaussian Distribution to Model Noise
	Slide 54: Calculating the Probability Density (Zero-Centered)
	Slide 55: Calculating the Posterior
	Slide 56: Uncertainty Propagation in Motion Models
	Slide 57: Sampling from a Gaussian Distribution
	Slide 58: Sampling from Odometry Motion Model
	Slide 59: Example of Sampling from Motion Model
	Slide 60: Example of Sampling from Motion Model
	Slide 61
	Slide 62: Sensor Model
	Slide 63: Beam-based Model
	Slide 64: Beam-based Model
	Slide 65: Range Sensor Measurements and Noise
	Slide 66: Ray-Casting Model
	Slide 67: Ray-Casting Model
	Slide 68: Ray-Casting Proximity Model
	Slide 69: Ray-Casting Proximity Model
	Slide 70: Ray-Casting Proximity Model
	Slide 71: Examples: Raw Data
	Slide 72: Examples: Approximation Results
	Slide 73: Examples
	Slide 74: Beam-Endpoint Model
	Slide 75: Likelihood Field Model
	Slide 76: Likelihood Field Model
	Slide 77: Likelihood Field Model
	Slide 78: Likelihood Field Model
	Slide 79: Likelihood Field Model
	Slide 80: Likelihood Field Model
	Slide 81: Likelihood Field Model
	Slide 82: Summary and an Open Discussion
	Slide 83: Calculating the Posterior Using Motion Model
	Slide 84: Sampling from Odometry Motion Model
	Slide 85: Likelihood Field Model
	Slide 86
	Slide 87: Particle Filter
	Slide 88: Weighted Samples
	Slide 89: Weighted Samples
	Slide 90: Particle Set
	Slide 91: Particles for Approximation
	Slide 92: Closed Form Sampling
	Slide 93: Importance Sampling Principle
	Slide 94: Importance Sampling Principle
	Slide 95: Particle Filter for Bayesian State Estimation
	Slide 96: Particle Filter Algorithm
	Slide 97: Particle Filter Algorithm
	Slide 98: Monte Carlo Localization
	Slide 99: Monte Carlo Localization
	Slide 100: Resampling
	Slide 101: Resampling
	Slide 102: Monte Carlo Localization Example
	Slide 103: Monte Carlo Localization Example
	Slide 104: Monte Carlo Localization Example
	Slide 105: Monte Carlo Localization Example
	Slide 106: Monte Carlo Localization Example
	Slide 107: Monte Carlo Localization Example
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: Velocity-Based Motion Model
	Slide 113: Posterior Probability for Velocity Motion Model
	Slide 114: Sampling from Velocity Motion Model
	Slide 115: Examples of Velocity Model

