COMPSCI-603: Robotics

Robot Learning



Robot Decision Making and Planning

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."
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Robot Decision Making and Planning

e Robots need to make various decisions and
construct different plans, for example:
= Decision making.

" Planning: task planning, motion planning
(e.g., for robotic arms), and path planning
(e.g., for mobile robotics).

e Decision making and planning characteristics:
= Reactive (one-time) decision making versus sequential planning.
= Certain versus uncertain scenarios.
= Observable versus partially observable space.



Common Scenarios of Planning

* Deterministic, fully observable:
= Agent knows exactly which state it is in.
= Agent action is executed as expected.

* Stochastic, partially observable:

= Observations provide new information
about current state with uncertainty.

= Robot actions may not be successfully
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= Agent may have no idea where it is.



Example: Vacuum World

* Observable:
= Start in #5
= Actions: [Right; Suck]

* Non-observable:
= Startin {1,2;3;4,5,6,7,8}
= E.g., action Right goes to {2;4,6,8}
= Actions: [Right; Suck; Left; Suck]

 Partially observable:
= Start in #5, local sensing only

= Stochastic actions, suck can make a clean
carpet dirty

= Actions: [Right; if dirt then Suck]
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Possible actions: left, right, suck



Example: Vacuum World (observable, deterministic actions)

 States: cross product of
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Example: Vacuum World (non-observable, deterministic actions)

L
| B l — .
[y [ ) n- * Definition of states is
’ * LR A =L different in the case of

|
I
. J [ non-observable
. s W vacuum world.

= . e If actions are

“ | L ‘L stochastic, action
N ehalll s M=l successor function is
' R also defined

[ L] [ differently.




Planning under Uncertainty

* In unstructured environments, robot decision making and planning
must be performed under uncertainty.

= Uncertainty in action outcomes, i.e., stochastic action
= Uncertainty in state of knowledge
= Any combination of the two
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Planning under Uncertainty

* Decision tree provides a classic solution to decision making under
uncertainty:
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Planning under Uncertainty

* Utility (i.e., reward or cost) function associates a real-valued utility with
each state or state-action pair.

* With utilities, we can compute and optimize expected utilities for
planning under uncertainty.

* The expected utility of decision d in the state s can be defined as:

EU(d)= ) Pr;(s)U(s)

ses

* The principle of maximum expected utility states that the optimal
decision under uncertainty is the one that has greatest expected utility.
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Planning via Reinforcement Learning

 Two fundamental problems in sequential decision making:
" Planning:
o A model of the environment is known.

o Robots perform planning and decision making using this environment
model.

o Robots do not need interactions with the environment for planning.
= Reinforcement Learning:

o The environment is initially unknown.

o The robot interacts with the environment.

o The robot improves its behaviors through the interaction.
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Reinforcement Learning

* Definition: an area of machine learning inspired by behaviorist
psychology, concerned with how agents seek to take actions in an
environment so as to maximize a cumulative reward.

tion :

Action a, Environment
), G

Reward r; O\ ?

State sy, 1 ’

Reinforcement Learning Setup
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Reinforcement Learning

* Reinforcement learning is based on the reward hypothesis.

* Reward Hypothesis: All goals can be described by the maximization of
expected cumulative reward.
= Areward R, is a scalar feedback signal.
" Indicates how well agent is doing at step t.

" The agent's job is to maximize cumulative reward.
* Actions may have long term consequences; thus reward may be

delayed.
" |t may be better to sacrifice immediate reward to gain more long-term

reward.
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Reinforcement Learning

* Differences from other machine learning
paradigms? ooty Unsupervied
" There is no supervisor, only a reward signal. Machine
" Feedback is delayed, not instantaneous.
* Time really matters (sequential, non i.i.d data). oo,

= Agent's actions affect the subsequent data it receives. Learning

* In robotics, learning from demonstration and reinforcement learning
are expected to work together:

* Learning from demonstration provides an initial solution.
* Reinforcement learning further adapt and improve the initial solution.
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https://www.youtube.com/watch?v=M-QUkgk3HyE



https://www.youtube.com/watch?v=M-QUkgk3HyE

Agent (Robot) and Environment

* At each step t, the agent: i JRSTTIPOY
= Receives observation O, R A
= Receives scalar reward R;
= Executes action A;

O,

* The environment:
= Receives action A;
= Generates observation O, ¢
" Generates scalar reward R, 1

* t increments at environment step
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History and State

* The history is a sequence of observations, rewards and actions:
Ht — 01, Rl'Ali . 0t—1' Rt—l'At—l' Ot, Rt

" |t is also called the sensorimotor stream of an agent.
= All observable variables (observations and rewards) are up to time t.

* What happens next depends on the history:
o The agent selects actions.
o The environment selects observations and rewards.

 State is the information used to determine the next action, which is
formally defined as a function of the history:

St = f(H¢)
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Environment State

* The environment state S7 is the
environment’s private
representation.

* It is used by the environment to
pick the next observation and
reward.

* The environment state S7 is not
usually visible to the agent.

* Even if Sf is visible, it may contain
irrelevant information.

environment state Sf
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Agent State

* The agent state S¢ is the agent’s
internal representation.

* It can be used by the agent to
pick the next action.

* It can be computed based on
the history:

St = f(Hp)

agent state S}
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Information State

* An information state (a.k.a., Markov state) contains all useful and
relevant information from the history.

A state S; is Markov if and only if

P[St+1 | St] — P[St+1 ‘ Sl. St]

" “The future is independent of the past given the present.”
Hl:t —7 St — Ht+1:r:>c

®» The state is a sufficient statistic of the future.
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Fully Observable Environment

4 b
AR (R action

* Full observability: agent directly o »:-'f’;;a
observe state: val
O = S,
* Information state = observation.
* Each state must be unique.

* In this case, agent-environment
interaction can be formally
modeled with a Markov Decision
Process (MDP).
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Markov Property

* Markov Property: The future is independent of the past given the
present.

A state S; is Markov if and only if

B[S s s anis

® The current state captures all relevant information from the history.
= Once the current state is known, the history can be thrown away.
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State Transition

* For a Markov state s and successor state s’, the state transition

probability is defined by:

7:)ss" =P [St%l =5 | St — 5]

e State transition matrix P defines transition probabilities from all state

to all successor state, where each row sums to 1.

P

— from

P11

_Pn 1

to

Pl n

Pnn_
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Markov Process

* A Markov process is a memoryless random process, i.e., a sequence
of states 54, 55, --- §; with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)
m S is a (finite) set of states

m P is a state transition probability matrix,
,Pss' — ]P)[St-l—l — S’ | St — S]
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Markov Process: Example

C1 2 3 Pass Pub FE Sleep

C1 i 0.5 0.5 7
c2 0.8 0.2
C3 0.6 0.4

P = Pass 1.0
Pub 0.2 0.4 0.4
FE 0.1 0.9
Sleep | 1

1.0

* Episodes sampled from the Markov
@ Process starting from C1 to Sleep:
= C1C2C3 Pass Sleep
= C1FBFBC1C2Sleep
= C1C2C3Pub C2C3PassSleep

" CIFBFBC1C2C3PubCl1FBFBFBC1C2
C3 Pub C2 Sleep
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Markov Reward Process

* A Markov reward process is a Markov chain of states with a reward
value associated with each state.

A Markov Reward Process is a tuple (S, P, R.~)
m S is a finite set of states

m P is a state transition probability matrix,
Pssl — ]P) [St+]_ — Sl | St — 5]
m R is a reward function, Rs = E[Ry1 | S¢ = s]

m 7 is a discount factor, v € [0, 1]
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Markov Reward Process: Example
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Markov Decision Process

* A Markov decision process (MDP) is a Markov reward process with
actions that transit the agent among states.

A Markov Decision Process is a tuple (S, A,P,R,~)
m S is a finite set of states
m A is a finite set of actions
m P is a state transition probability matrix,
P, =P[Str1 =5 | St =s,Ar = ]
m R is a reward function, R = E[Ri+1 | St = s, Ar = 3]

m 7 is a discount factor v € [0, 1].
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Markov Decision Process: Example

* |n this example, actions
are deterministic.
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Markov Decision Process: Drag Racing Example

e MDP can also model stochastic actions:

Overheated

Image modified from http://ai.berkeley.edu

30



MDP and Reinforcement Learning

* A Markov decision process (MDP) formally describes an agent-
environment interaction for reinforcement learning (RL):

= MDPs assume that the environment is fully observable.
o The current state completely characterizes the process.

» Most RL problems can be formulated under MDPs, for example:

o Adaptive control primarily deals with continuous MDPs.
o Partially observable problems can be converted into MDPs.

* An RL approach may include several components:
" Policy: a function that determines agent actions.
= Value function: how good each state is.
" Model: agent’s representation of the environment.

31



RL Components

* Policy

A policy 7 is a distribution over actions given states,

mals)=P|A:= a | .5; = s]

= A policy fully defines the action of an agent in each state.
= MDP policies depend on the current state only (not on the history).
" Policies are stationary (time-independent): A; ~ 7(-|5:).Vt > 0

= Policies can be deterministic (and greedy): a = 7 (s)
or stochastic: m(a|s) = P[A; = a|S; = 5]
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RL Components

* Value Function
" Value function is a prediction of the overall future reward.
" |t is used to evaluate the goodness or badness of each state.
" |t is then used to select the action given each state.
Vr(s) = Eq [Rt—i—l s 72Rt+3 Fuss] Bp = 5]

* Model

" A model represents the environment and predicts what it will do next.

o The state transition matrix P predicts the next state:
7);5/ — P[St+1 — S’ | SI‘ — Az_- — 8]
o The reward function R predicts the next immediate reward:

R;):E[Rt+1 ‘ StZS.AtZB]
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RL Components: Example

Start

Goal

m Rewards: -1 per time-step
m Actions: N, E, S, W

m States: Agent's location
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RL Components: Example

Policy Value Function
EEEEIEIE
a4 B B
K2 B
Bl B

-y
M I
-
ks I

Start Start

-3

m Arrows represent policy 7(s) for each state s m Numbers represent value vy (s) of each state s
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RL Components: Example

* The model uses the grid map
to represent the state Start
transition P?

- -
SS’ .

-1
* Numbers encode immediate - .

reward RZ from each state
(same for all actions)

1

* The model may be imperfect. - Goal

36



Model-Based and Model-Free RL

Model- based RL Model-free RL

* Model-based RL s

= Learn a model from experience.

= Compute a value function (and/or
policy) from model.

¢ MOdel—free RL value/policy value/policy
u NO mOdeI. acting acting
. planning planning direct
" Learn a value function (and/or AL
pOIICV) from experience. model experience model experlence
\\model/ model
learning learning

3/



Q-Learning

* We're going to learn a model-free RL (although knowing a model also
works).

* We will focus on finding a way to directly estimate a quality function

that is associated with both states and actions.

* This function is not necessary to directly associate with the world and
represent the world.

* This quality function is called the Q-function.
= A recursive way to approximate the goodness/badness of a state-action pair.
= Q-function is like value functions, but it considers both states and actions.

* The process of estimating the Q-function is called Q-learning.
" Q-learning integrates learning and planning.

38



Q-Learning

* Given a sequence of states, actions, and rewards defined by an MDP:
Soﬂor'c, 5101P1 Szazr'z S3Cl3|"3... Skakr’k...

we define a unit experience as < s, a, ry Sy.;>.

* At each step s, choose action a that maximizes the Q-function Q(s, a).
" Qis the estimated quality function.
" |t tells us how good an action is for a state.

" Q(s, a) = immediate reward for taking an action + discounted best Q-value
from the resulting future states.
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Q-Learning: Mathematical Formulation

e Q-function has a recursive formulation:

* Q-learning estimates the table of Q-values, called Q-table, which
updates Q-values related to the state-action pairs that are visited.
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Q-Learning: Algorithm

* The Q-Learning algorithm is recursive, using the unit experience:
¢Sy A Pk Sk ?

41



Open Discussion

* How to define States
and Actions so that we
can use Q-learning to
enable autonomous
navigation (e.g.,
obstacle avoidance and
wall following) for a
mobile robot equipping
a 2D LiDAR?

Walls and obstacles

2D LIDAR

e

Mobile robot

Map,generated by thei2D LIDAR

42


https://www.mdpi.com/1424-8220/23/5/2534

Open Discussion

Reference:

Moreno, D.L., Regueiro,
C.V,, Iglesias, R. and Barro,
S., 2004. Using prior
knowledge to improve
reinforcement learning in
mobile robotics. Proc.
Towards Autonomous
Robotics Systems. Univ. of
Essex, UK.
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Q-Learning: Example

al4d a4l
s4

Y =.5, r = 100 if moving into state s6, 0 otherwise
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Q-Learning: Example

Initial State
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Q-Learning: Example
The Algorithm

Available actions: al2, al4
Chose al2

sl

azi
als L
ald adl __ais a3’ 555

s4 5 End: s6

as4
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Q-Learning: Example
Update Q(s1, a12)

Available actions: a21, a25, a23

Update Q(s1, al2):
Q(sl, al2)=r+ .5 * max(Q(s2,a2l),
Q(s2,a25), Q(s2,a23))

25
ald adl _ais

s4

as4
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Q-Learning: Example

Next Move

Available actions: a21, a25, a23
Chose a23

als ot
al4 a4l 315 452 558

s4 s5 End: s6

a54
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Q-Learning: Example
Update Q(s2, a23)

Update Q(s2, a23):
Q(s2, a23) =1+ .5 * max(Q(s3,a32),

Q(s3,a36))
=0

A
ald4 adl a4s 2

s4

and
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Q-Learning: Example

Next Move

Available actions: a32, a36
Chose a36

als

ald adl _a1s - a2 ash

s4 S5

as4

End: s6

50



Q-Learning: Example
Update Q(s3,a36)

FINAL STATE!

Update Q(s3, a36):
Q(s3,a36)=r =100

ald a4l _ails

s4

a>4

y
v I,

S5

as56

End: s6
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Q-Learning: Example
New Episode  The Algorithm

Available actions: al2, al4
Chose al2

all

sl s2

azi

als L
ald adl __ais a3’ 555

s4 5 End: s6

as4

Episode: agent-environment interactions from initial to final states.
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Q-Learning: Example
Update Q(s1, a12)

Available actions: a21, a25, a23

Update Q(s1, al2):
Q(sl,al2) =r+ .5 * max(Q(s2,a21),
Q(s2,a25), Q(s2,a23))

25
ald a4l ats

s4

aS4
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Q-Learning: Example
Update Q(s2, a23)

Available actions: a32, a3

Update Q(s2, a23):
Q(s2, a23) =1+ .5 * max(Q(s3,a32),

Q(s3,a36))
=0+.5*100=>50

25
ald a4l it

s4

a54
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Q-Learning: Example
Final State (after many iterations)

s 223
sl s2 s3
a2l a3l
al6
al
214 a4l 215 a2 258

s4 s5 End: s6

ad4
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Q-Learning: Algorithm

* Two problems:

iting
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Action Selection by &-greedy Policies

* The e-greedy policy is widely used to choose an action given a state:

g-greedy policy:

1. Generate a random number r € [0,1]

2. If r > &, choose an action derived from the Q values
(which yields the maximum reward)

3. Else, choose a random action

* The value of € determines the exploration-exploitation of the agent.
= Alarger € results in more exploration and less exploitation.

= As arule of thumb, € is usually chosen to be close to 1 and decreased over time.
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Temporal Difference Update

* Temporal Difference (TD) algorithms enable the agent to
incrementally update its Q-table through every single action it takes.

NewEstimate <~ OldEstimate 4+ StepSize [Target — OldEstimate}

" The value Target-OldEstimate is called the target error.

= StepSize is called learning rate, with a value between 0 and 1; 1 means
completely overwrites the old Q value.

* With the temporal difference update, Q-learning becomes:

{E(E;f, ;4]5} — {E(Sf, ;415} + Hf_— L1+ i 111:?}{ {E(Sf L] - 1‘1) — {E(Sf, ;4]5}-‘ .
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Temporal Difference Update

* Q-Learning is an off-policy learning algorithm, because:

= |t directly finds the optimal Q-value without any dependency on the policy
being followed (due to the maximization operation).

Q-learning (off-policy TD control) for estimating 7 ~ m,

Initialize (Q(s,a), for all s € §, a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from () (e.g., e-greedy)
Take action A, observe R, S
Q(S,A) + Q(S,A) + a|R+ ymax, Q(S',a) — Q(S, A)]
S« 8
until S i1s terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8




Q-Learning: A Visual Demonstration
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SARSA

* SARSA is acronym for State-Action-Reward-State-Action.
* SARSA is an on-policy TD learning algorithm, because:

= |t evaluates and improves the same policy that is being used to select actions.

Q(Sp, Ar) = Q(Se, Ay) + « [Rﬂ—H +YQ (St 15 Ar41) — Q(St, Aa)}-

Sarsa (on-policy TD control) for estimating Q) ~ q.

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A" from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A) «+— Q(S,A) + cu[R +1Q(S", A") — Q(StA)]
S« S A« A

until S is terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7
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Q-learning (off-policy TD control) for estimating = ~ ,

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q({erminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from () (e.g., e-greedy)
Take action A, observe R, S
Q(S, A}) — Q(S,A) + CE[R‘|' ymax, Q(S’,a) — Q(S, A)]
S5« 5

until S 1s terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8

Sarsa (on-policy TD control) for estimating Q) ~ q.

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A" from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A) + Q(S,A) + a[R+vQ(S",A") — Q(S, A)]
S« 8 A A

until S is terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7
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Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

Italian Institute of Technology



https://www.youtube.com/watch?v=bxtPyJqVrmk

Difficulties of RL on Real Robots

* When the number of states and actions becomes larger, the Q-table
becomes intractable, and Q-learning easily suffers from the curse of
dimensionality:

= The amount of memory required to save and update the Q-table would
increase as the number of states and actions increases.

The amount of time required to explore each state to create the required
Q-table would be unrealistic.

* Design of states, actions, and rewards is not trivial in real-world
robotics applications:

= States/actions are typically continuous variables in robotics applications.
* Reward definition often requires significant expert or domain knowledge.
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Difficulties of RL on Real Robots

* RL algorithms are
notoriously difficult to
train for real robots.

= Sample efficiency and
operation safety.

= Convergence and
reliability due to huge
exploration space.

= Sim-to-real gaps.
= Generalizability to

changes in the

environment and robot - | ~
co nﬁgu rations. https://www.youtube.com/watch?v=iaF43Zeloel
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https://www.youtube.com/watch?v=iaF43Ze1oeI
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