COMPSCI-603: Robotics

Kalman Filter for State Estimation

Partial slide courtesy by K. Kitani and C. Stachniss



Kalman Filter

Chapter 3.2, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.






Kalman Filter

e Kalman filter is a Bayes filter for the linear Gaussian case.

* It performs recursive state estimation.
= Prediction/estimation step exploits the motion/control/action.
= Update/correction step exploits the observation/sensing/observation.
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How NASA used the Kalman Filter in the Apollo Program: https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program 4



https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program

Kalman Filter Example




Bayes Filter and Kalman Filter

e Bayes filter is a mathematical tool for state estimation:
= Prediction/estimation:

@(ift) = /p(fl?t | ug, 1) bel(xy—1) dag o

= Correction/update:

bel(x¢) = n p(z | @) bel(xt)

* Kalman filter is an estimator for the linear Gaussian case.
* It is an optimal solution for linear models with Gaussian distributions.



1D Example of Kalman Filter




Motion Model

know velocity

Motion Xy = XT4+_1 T+ S+ T¢

Tt NN(O,O'R)



Motion Model

Tt =Tt—1+ S+t

ry ~ N(O'J UR)
—_—
S r2
know velocity noise

* How can we represent the motion model P(xs|x;_1)?

e |t is a linear Gaussian model.

P(Cﬁt\ﬂft—l) — N(iﬁt;iﬁ‘t—l + S,Ufr-)

Mean Standard Deviation



Motion Model

Visualization of this
distribution from ?
motion model: .

Tt =Tt—1+ S+t

ry ~ N(O'J C"'-R)
e ——
S r2
know velocity noise
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Sensor Model

Sensing <t — ¢ —|— d¢ dg GPS

qr ~~ N(Oa OQ)
a  —
* How to represent the sensor / | q1
observation model? —

error
GPS measurement Zl £E1 True position

e |t is also a linear Gaussian model:

P(Zt‘ﬂft) — N(Zt;llft,O'Q)
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Sensor Model

e VVisualization of the sensor model:

dg.. GPS

GPS measurement Zl

2t = Tt T Q¢

True position
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Prior State Distribution

e Prior state distribution is assumed to be a linear Gaussian model:

A
initial estimate ':EO

true position Initial estimate

true position

initial estimate uncertainty (O () P(C%O) — N(:ﬁ'o, X0, O'O)

The 'cap’ notation denotes 'estimate’ 13



Prediction/Estimation

e How can we predict 21 given 2 ?

* Prediction/Estimation: We use the prediction step to estimate the

belief using the motion model

Bel(a) = [ pla | wesior) belli-r) dai

531 5&0

Mean of the new estimate: i‘l — Z/f)o
2

S

Variance of the new estimate: o1 = (78 —+ O'?

https://mathworld.wolfram.com

/Convolution.html

14


https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/Convolution.html

Correction/Update

* How can we update the estimated belief?
» Correction/Update: We use the ?‘,\
sensor model to update the

estimated belief.
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* Given the uncertainty (encoded

by the variance) of the prediction initial system  sensor
and sensor estimate WhICh one estimate prediction estimate
)
should we trust more? Lo T 21
* How to merge the information? e 02

uncertainty uncertainty

15



Correction/Update

* Intuitively, the smaller variance
means less uncertainty, so that we
can trust it more.

* Thus, we want a weighted state
estimate correction.

* Something like this:

system
prediction

oy

2 2
o1 + 0

2

01

<1

Sensor
estimate

O

2
q
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Correction/Update

* This happens naturally in the Bayes filtering (with Gaussians) framework:

bel{zi) = n p(2¢ | T bel(z;)

mean: 23 mean: I
variance: oy variance: o1
new mean: 72 5 new variance: 2 9
4+ T104 + 2109 o1 0407
b1 = 2 2 o1 = 2 € 0.2
O, T 07 7 1

‘plus’ sign denotes post ‘update’ estimate (posterior)
17



Correction/Update

* As a recall from a math class...

a1 e

o () = e 27y
lEj HEEEE?

1 _f.'.—y:;'-":"

o (t) £ e 27
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oroz =
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Correction/Update

system 2 sensor 2

prediction 01 estimate Jq

* With a little algebra, we get a weighted state estimate correction:

1102 + 2107 o2 o2

"‘|‘ . q - q | 1
b1 = 2 | 2 — 11 2_|_ 2 ~ <1 2_|_ 2
O'q 07 O'q 07 O'q 07
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Kalman Gain

* With more algebra, we can rewrite the new mean and variance as:

2
o
T =1 521 —21) = 21 + K(2z1 — 1)
2
o + 07 / .&
q
Kalman gain Innovation
2 2 2
o570 o
1
o1 + 0, o1 t+0g
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Moving to General Kalman Filter

* Everything is multi-variant Gaussian:

p(z) = det(27r2)_% exp ( — %(m — U

34.19%9 34.1%

0.0 0.1 02 03 04

-30 -—20 -1lo M lo 20 30

)8 @ — )

Courtesy: K. Arras
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Linear Models for Kalman Filter

e Kalman filter assumes linear models for motions and observations.
flz)=Ax+1b
e Kalman filter assumes zero mean Gaussian noise in the linear models:
T = Axi_1 + Brug + €4
2y = Crxy + 04

22



Linear Gaussian Motion Model

* We can represent the linear motion model

Ty = A1 + Brug + €
as a Gaussian probability distribution for the Bayes filter framework:
1)
p(xs | ug, x4—1) = det (2w R;) ™ 2

1 1
eXp <—§(37t o o R Btut)TRt 1(5171& o (Ve el e Btut))

where [B; is covariance that encodes the noise of the motion.
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Linear Gaussian Sensor Model

* We can also represent the linear sensor model
zt = Cyxy + 0y
as a Gaussian probability distribution for the Bayes filter framework:

p(z | x¢) = det(?th)_%
1

exp (—5(2& — Cyxe) Q7 M (2 — Cﬂt))

where ()); is covariance that encodes the noise of the sensor.
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General Kalman Filter Variables

« A, : Matrix (n X n) that describes how the state evolves from t — 1
to t without control or noise.

« B;:Matrix (n x 1) that describes how the control u, changes the
state fromt — 1 to t.

» (U4: Matrix (k X n) that describes how to map/project the state x;
to an observation z;.

e €+ and 575 : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed
with covariance R; and ();respectively.
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General Kalman Filter Algorithm

KalmanFilter(ut_l, Zt—l; Uy, Zt)

Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the
state fromt — 1 to t.

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed
with covariance R; and (Q;respectively.
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Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the

General Kalman Filter Algorithm < =

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed

KalmanFllt cr (/,Lt —1, 21’: —1, ut : Zt ) with covariance I?; and ();respectively.

motion control

pr;d;ztri]on l/llt — At l’l/t— 1 —I— But ‘old” mean

— ‘old’ covariance Pred lCtl On (S“de 23)
cpg\?:!izt;%l Zt At Zt—lA;— _I_ R Gaussian noise ,’L’t BISEL Atmt—l _I_ Btut _I_ Et
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Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the

General Kalman Filter Algorithm < =

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed

KalmanFilt er (/’Lt— 1 : Zt— 1 ; ut : Z'[;) with covariance R; and (Q;respectively.

motion control

pr;d;ztri]on ﬁt — At l’l/t— 1 —I— But ‘old” mean

—_ ‘old’ covariance Pred lCtl On (S“de 23)
C%fg&;g; Zt At Zt—lA;— _I_ R Gaussian noise ,’L’t BISEL Atxt—l _I_ Btut _I_ Et

Ky = E{;CtT(CtZtCtT + Q)71 Gain st-ae g —n ke

q 1
(Slide 20, 2 2 2
. 010 o
1D) of = o =(1-—=- i=01-K)o?
In ) 0q U%+02 < 0-%—1_03) 01 ( )01
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Ay Matrix (n X n) that describes how the state evolves from ¢t — 1
to t without control or noise.

By : Matrix (n x [) that describes how the control u; changes the

General Kalman Filter Algorithm < =

(' : Matrix (k x n) that describes how to map/project the state x;
to an observation z;.

€+ and 61& : Random variables representing the motion and sensor
noise that are assumed to be independent and normally distributed

KalmanFilt er (/’Lt— 1 : Zt— 1 ; ut : Z'[;) with covariance R; and (Q;respectively.

motion control
prediction 11 — A _I_ Bu S
mean _ 1 . .
lft tfit ! Prediction (side 23)
gfii?ﬁl Et At Zt L 1 A;— _I_ R Gaussian noise ,’L’t e Atxt— 1 _|_ Btut _I_ Et

Kt p— EtCt—r(Cttht—r —I— Qt)—l Galﬂ :?:{F::%1+02(f0%(z1—:?;1)::f:1+K(21—£1)

observation model (Slide 20, 0%02 o2
update —_— 711 g-g C 'y in 1D) 01+202+((]72:< _02_:02>‘7%:<1_K)0%
 — — 1 1
mean Mt Mt t Zt t l,Lt q q

~ Update siide24)
(I o KtCt)Zt St — Otﬂft iin (St

update E
covariance t

Mt is the mean and }.; is the covariance of the distribution of X'¢
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2D Example of Kalman Filter

A=

> L
state measurement

;] -l

Constant position Motion Model

x
Y

x
Y

Ly — ACBt_l + B’U;t + €4
system noise

€t NN(O,R)

Constant position
I O

_O 1_ Bu:
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2D Example of Kalman Filter

» U
state measurement

=

Measurement Model

<1 = CtCCt -+ 6t

Zero-mean measurement noise
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2D Example of Kalman Filter

* To track the robot (with a0 c—| 10
constant position): 0 1 0 1
motion model observation model
General Case Constant position Model
fir = Appie—1 + Buy Ty = Typ_1
it = AtEt_lA;r + R Z_t — Et—l —|— R
K; = %:C, (Cy2:C) + Q)™ K; = St(it - Q)_l
py = iy + Ky (2 - Ctfit) xy = Xy + Ki (20 — X4)
i = (1= KoC) 2 2 = (I — Kt)jt
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Extended Kalman Filter (EKF)

Chapter 3.3, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.
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Motivation of EKF

e Motion model of the
basic Kalman filter
must be linear.

vy = Axi_1 + Bus + €

Output:
Gaussian (Prediction)

p(‘ﬂ?t)

p(:}:t_l) A

T
Input:
Gaussian (Belief)
34



Motivation

* But motion is not
always linear; actually,

In most cases, it is Output:
nonlinear. NOT
Gaussian

e Can we use the Kalman
Filter with nonlinear
motion models?

e How to deal with non-linear models?

Lt

p(’xt)

P(It—ﬂ |

Ti—1

Input:
Gaussian (Belief)

35



Extended Kalman Filter

e Uses local linearization
(linear approximations) of
model to keep the
effectiveness of the KF
framework.

e EKF does not assume
linear models.

* |t assumes Gaussian noise.

Qutput:
Gaussian

It

p("rt)

P(-’ﬂt—l) 1

Tt_1

Input:
Gaussian

36



Extended Kalman Filter

Kalman Filter Extended Kalman Filter

linear motion model

xy = Axi_1 + Bus + ¢
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Motion Model Linearization

0 _1,U
g(xe_1,us) =~ g(pe—1,us) g(g;t 11 2 (Tt—1 — pe—1)

Taylor series expansion

~ g(fe—1,ut) + Gy (xr—1 — pht—1)
Jacobian Matrix

‘the rate of change in x’
‘slope of the function’

&

B3| =

play | ug, 1) ~ det (2w Ry) ™

1
exp (= 5 (@0 = glue 1) = Ge (w11 = pr-))"

Ry (zp — gug, pe—1) — Gy (41 — Mt—lp)

Y

linearized model
38



Jacobian Visualization

* Jacobian is the orientation of the tangent plane to a multi-variant
function at a given point, i.e., slope of the function.

* It generalizes the gradient (or tangent line) of a single-variant function.

mll\l'ﬂ?ﬂb‘.lm

Courtesy: K. Arras
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Sensor Model Linearization

h(z:) ~ h(fit) - @iggit) (Te—1 — [it)

Taylor series expansion

~ h(py) + Hy (v — fig)
Jacobian Matrix

‘the rate of change in x’
‘slope of the function’

1
2

p(z¢ | x¢) = det (27Qy)

1

exp ( 5 (20 — M) — Hy (20 — f3))"

Q7" (24— h(fir) — Hy (w¢ — 1))

.

linearized model

40



EKF Algorithm

Kalman Filter

fe = Agprs—1 + Buy

K, = X_]tCtT(CtitCtT + Qt)—l

Uy = [t + Kt(zt — Ot/at)

Y = (I — K Cy)Xy

Extended KF

fr = g(pe—1,uz)
St p— Gtit_lG;r _I_ R

K, =S H (HSHT +Q)

py = fig + K (ze — h(jiz))
Et p— (I — Kth)i{;
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CyberZoo T : ! | Speed: 20x



https://www.youtube.com/watch?v=iTe6-lLp5iM



https://www.youtube.com/watch?v=NVf9uUJV7QY

EKF 2D Example

state: position-velocity

: < T position
iL’ velocity
z=\ )
. position
{\(b(_\cg) ’y velocity
. > _ -
R
S
§ constant velocity motion model
3
S 1 At 0 0 ]
. O 1 0 0
Q A=
; Ce 0 0 1 At
X 0 0 0 1 |

with additive Gaussian noise



EKF 2D Example

measurement: range-bearing

z__fr
|6

measurement model

Is the measurement model linear?

z = h(r,0)

with additive Gaussian noise

non-linear!

What should we do?
45



EKF 2D Example

* Linearize the sensor/measurement model fe = Agpip—1 + Buy
[ r ] 8 it — AtZt_lAtT —I— R
z = Z _ _ _
:9 Hza_:? Kt:gthT(HtEtHTJFQ) 1
,’L'Q + y2 :| €XT o _
— \% =1 + K —h
i tan_l(y/CC) What is the Jacobian? Ht Kt t(Zt _ (Mt))

Et — (I — Kth)Et
* Linearize the observation/measurement model

I % gg g; 2—; | I cos(f) 0 sin(d) O ]
_H — —
I % gg gz g_f', ] - —sin(@)/r 0 cos(f)/r O |
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Problems with EKFs

* Taylor series expansion = poor approximation of non-linear functions,
success of linearization depends on

" Limited uncertainty and
" Limited amount of local non-linearity

 Computing partial derivatives is a pain
e Cannot handle multi-modal (multi-hypothesis) distributions

* What’s next?
* Unscented Kalman Filter (how to better generalize to non-linear models)

* Non-Gaussian noise Kalman Filter (how to generalize the Kalman Filter when
noise distribution is Non-Gaussian)

= Stability and Divergence (how to design a stable KF that does not diverge)
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