Problems with EKFs

* Taylor series expansion = poor approximation of non-linear functions,
success of linearization depends on
" Limited uncertainty and
" Limited amount of local non-linearity

* (Manually) calculating partial derivatives is a pain
e Cannot handle multi-modal (multi-hypothesis) distributions

* What’s next?
* Unscented Kalman Filter (how to better generalize to non-linear models)

* Non-Gaussian noise Kalman Filter (how to generalize the Kalman Filter when
noise distribution is Non-Gaussian)

= Stability and Divergence (how to design a stable KF that does not diverge)



COMPSCI-603: Robotics

Simultaneous Localization and
Mapping (SLAM)

Partial slide courtesy by C. Stachniss
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and Mapping (SLAM) builds
a map of the environment
from a mobile robot (or a
mobile sensing platform).

e At the same time, SLAM
localizes the mobile robot
in the map build so far.

* SLAM is a chicken-and-egg
problem.
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https://www.youtube.com/watch?v=fCHOU-fw2c0

SLAM Applications

Self-driving cars in the wild

Indoor mobile robot

Guanwei lJia, Xiaoying Li,
Dongming Zhang, Weiqing Xu,
Haojie Lv, Yan Shi, and Maolin
Cai. "Visual-SLAM Classical
framework and key
Techniques: a review." Sensors
22, no. 12 (2022): 4582.

Aerial UAV
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Extended Kalman Filter (EKF)-based SLAM



Definition of the SLAM Problem

* Given
= Controls
U1.T = {ulau29u3a < -,UT}
= Observations
Z1:T — {Zla Ry &3y s ZT}
* Wanted
" Map of the environment
T

= Path (or current pose) of the robot

Lo T — {3’?0;33'1;3?27 . -;fL'T}

or



EKF SLAM

 SLAM can be formulated under the Bayes filtering framework to
estimate:

p(.ib‘t,m ‘ Z1:ts UT: t ? *
<:5 u,,
Y

* Extended Kalman Filter (EKF) can @
be used to solve the SLAM problem.

= Kalman Filter is a recursive Bayes
Filter for the linear Gaussian case.

" EKF for dealing with non-linearities.




Recall EKF

Extended_Kalman filter(u;_1,>:_1, us, 2¢):

fzt — g(ut;ﬂt—l)
2t =Gy X ng + Ry

Kt — it H?(Ht St Hér -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t

Estimation using nonlinear
motion model g

Correction using nonlinear
sensor model h



EKF SLAM

* EKF SLAM applies EKF to SLAM.

* EKF SLAM estimates robot’s pose and locations of landmarks (e.g.,
points in the world) in the environment.

* State space (for the 2D plane) is:

o T
:Ct - ( :Cj y;e 7m1,337m1,y7"'7mn,xamn,y)
robot’s pose landmark 1 landmark n

" Robot pose includes x, y, and 6.
" Landmark locations includes x and y coordinates.
= Assumption (for now): known landmark correspondences.

10



EKF SLAM

* Map with n landmarks: (3 + 2n)-dimensional Gaussian.
* Belief is represented by:

Lt Emts{:t Z:’L‘tml 0 ooc Emtmn
1 Emlwﬁ Zml m1 Zmlmn
azs Emna:t Zmnml Emnmn

11



EKF SLAM Steps

State prediction
Landmark prediction
Measurement

Data association
Update

A S

More compact math notation

12



EKF SLAM Overview: Initialize State

X E:L‘ta:t Emtml
( mtl \ / Emlmt Emlml
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EKF SLAM Overview: Predict State

L thwt Ea:tml Z:Ctmn
( mtl \ / Zmlmt Emlml Emlmn \
\ mn )\ Bonage Zmam: S )
7’ by

14



EKF SLAM Overview: Predict Landmark Locations

x Dig,x,  2mpmy - --  2zem.
( mtl \ / Zmlxt Emlml Emlmn \
\ mn ) \ Zmee Zmam, Sramn /|
7’ by
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EKF SLAM Overview: Obtain Measurement

X E:L‘ta:t Emtml Emtmn
( mtl \ / Zmlmt Emlml Emlmn \
\ mn ) \ Zmee Zmam, S )

16



EKF SLAM Overview: Perform Data Association

17



EKF SLAM Overview: Update State

18



EKF SLAM

* Setup
= Moves in a 2D space
= Observation of point landmarks
= Known number of landmarks
= Known data association
= Range-bearing sensor

= Velocity-based motion model

Landmark

Estimated

True

*
53

19




Velocity-Based Motion Model
* Arclength:

[=v- -At =1 -wAt

(x',y")
wAt
e Rotation radius:
VAt ”
-------------- <X.y>
y < X,y r= [—
r w
wAt .
65— 90 0 * Circle center:
KoY X
v X, =X —T-cos(0 —90)
control MZ[V:| = X—TI"- Sin 9
(0))]

Y. =y —r-sin(6 —90)

=X+4+r-cos0
20



Velocity-Based Motion Model

X' =X, +71-cos(0—90 + wAt)
= X. + r - sin(0 + wAt)

* New pose after At: y' =y.+r-sin(0 — 90 + wAt)

=y. — - cos(0 + wAt)
x’ T.+ 2 sin(f + wAt)
y’ = Yo — < cos(0 + wAt)
o' O+ wAL

\ C [ —LsinfH & sin(0 + wAt)
— - = cosf — = cos(f + wAt) y
wAt

e

21



EKF for SLAM: Predict State Using Motion

* Goal: Update state space based on the motion.
* Velocity-based motion model in the 2D plane:

x’ T —oEsinf + - sin(0 + wiAt)
Y’ = y |+ Lcosf —  cos(0 + wiAt)
0’ 0 wy At

-_

g::c,y,Q(ut:(xvyag)T)

* How to map this motion model in 3D space to the (3 + 2N)-
dimensional state space in the EKF-SLAM?

22



EKF for SLAM: Initialize State

* Platform starts in its own reference frame (all landmarks unknown).
e State has (3 + 2N) dimensions:

w = (000 ... 0)F

(

oo oo
oo oo
oo oo
A O oo
N oNoNe

23



EKF for SLAM

1:

) 2:
3:

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

l}t — g(utaﬂt—l)
2t =Gy X Gz + Ry

Kt — it Hg(Ht St Hg -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t

24



EKF for SLAM: Update State

* From the motion in the plane:

x! T —oksinf + ot sin(6 + wiAt)
Y’ = y | | Zcosf— 2k cos(0 +wiAt)
0’ 0 wy At

* To the (3 + 2N)-dimensional state space:

/ T
/i,\ /?j\ L0 0 0...0 — 2t ginf + 2 sin(6 + w; At)
B 0 1 0 0...0 o T
Y = o 1+l 0 01 0 0 Lcost — 2t cos(0 + wrAt)
. i) oveers ) we B
FI

-

g(ut ,le't)

F, : Projection function that projects variables from 3D space to the 3 4+ 2N space

25



EKF for SLAM

1:

2:
) 3

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

—Hr—=—g{ttr =T Done
2t =Gy X G? + Ry

Kt — it Hér(Ht it H;:_F -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t

26



EKF for SLAM: Update Covariance

* The motion model only affects the motion of the robot, but NOT the
landmarks.

* Representing the motion model’s Jacobian in the (3 + 2N) space:

Jacobian of the motion (3x3)

l

- (91
|

Identity (2N x 2N)

27



Jacobian of Motion Model

(

X

Y
0

)

—Ztsinf + 7t sin(f + wiAt)

Yt cosl —
Wi

=t cos(0 + wiAt)

t

Wt At

)

28



Jacobian of Motion Model

5 a: —Ztsinf + - sin(0 + wiAt) '\ |
“C = BT (g)+( R0 T )
3 _ —2ksing + b sin(f + wiAt) _

= ”a(:c,y,e)T( o emOT Ll T T )

Wt At



Jacobian of Motion Model

Gy

9 t

P [ x —Ztsing + ot sin(0 + wiAL)
= y | + -cost — 2t cos(0 + wiAt)
i Wt At |

I+ 3.y 07 ” Yt o5 — =t cos(0 + wiAt)

t

Wt At

9 ( “Lsinf + - —t sin(0 + wy At) )

0 0 —Ztcosf+tcos(f + wiAt)
I+ ( 0 0 — tsin 6’—|—— sin(6 + wyAt) )

0 0 0

AN ¢

Jdx Oy 06

30



Jacobian of Motion Model

Gy

t

P [ x —Ztsing + ot sin(0 + wiAL)
= y | + -cost — 2t cos(0 + wiAt)

v Wt At
9 oosind + 2t sin(6 + wy At)
I+ 3.y 07 ” 0086’ — w—i cos(6 + w; At)

Wt At

0
— L cos O+ - cos(0 + wiAt) )

0 0 —Ztcosf+tcos(f + wiAt)
I+ ( 0 0 81n6’—|——sm(9—|—tht) )

0 0

0

1

0

—ZF sin 0+ 2E sin(0 + wi At)
1

31



EKF for SLAM

1:

2:
) 3

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

—Hr—=—g{ttr =T Done
2t =Gy X G? + Ry

2t

— GtEt_lGér—l—Rt
G* 0 Yor  Dam (GHYL 0
(0 I)(zm zmm>( o 1 )tH

( GES(GH)T G Sam
- ( (Cm)” S ) T

32



Summary of Estimation in EKF for SLAM
EKF_SLAM _Prediction(p; 1, %1, Ut, 2t, Ct, Ry¢):

LRIV O o0 Projection function that projects variables
2: by = R IR R0 R ECE 0 from 3D space to the 3 4+ 2N space
3x (3 + 2N) Q10T SIS

Ut

L Cos fhg—1,0 — == cos(pi—1,0 + wiAt)

W

tht

3 U = Ui— 1+FT
(3+2N)x 1

— 2L COS g1 9+— cos(pi—1.0 + wiAtl)
4: Gf — i/ + Fg
(3+2N)x (3 + 2N)
3% it — Gt Zt—l Gf +
(3+2N)x (3 + 2N)

”t Sin fty_ 1,0+ -+ Slﬂ(.U»t 1,0 +wiAt) F;

( —f81nut 19—|——t Sl]fl()ut 19+tht)
0 0
0 0O
0 0 0
F

I 33



EKF for SLAM

1: Extended_Kalman filter(u:_1,>: 1, us, 2¢):

2: - o Done

3: —gr——G}—Ezfl—GtL!—RT Done

4 Ky=3%, H'(H, S, HT + Q,)™!
D! pe = fiy + Ki(ze — h(fie))

0: Et — (I — Kt Ht) Et

7 return [, 2t

34



EKF SLAM: Correction in EKF for SLAM

e Assume know data association on landmarks:
= ¢; = 7: i-th measurement at time t observes the landmark with index j.

 |f a landmark is observed for the first time, initialize the landmark.

* Compute the expected observation based on sensor model
 Calculate the Jacobian H of a sensor model h.
* Proceed with computing the Kalman gain.

35



Range-Bearing Sensor Model

* We use range-bearing observations,

for observation beam i: ; T
= (Tta (/bt) @

 |f a landmark has not been observed, we can initialize it with:

i Hili [tz (i COS(@% Tl ﬂt,ﬁ)

Gy )\ By )T\ 7 osin(@} + fieo)

Hj,y Mty Ty S\ Py T [t 0
location of estimated location relative measurement
landmark j of the robot from beam i

36



Range-Bearing Sensor Model

5 — 533’ L 7,x ﬂt,a:
* Convert between 2D location — 5y )\ iy — Bty
and range-bearing .
observation for landmark j: q = 090
3 V4
: ata’n2(5ya 5w) o ﬂt,@
= h(j)
- Oh( 1
 Compute the Jacobian: IOWHZ' — (_Mt)
T Ofit

low-dim space (:E, Y, 0, mi x, mj,y)

37



o 53} _j,a: — Utz
Range-Bearing Sensor Model 0 = (ay ) :< S
g = 016
e Jacobian: 2 = ( atan2(5y\,/(?w) e )
lowazl _ ah(lu_t) = h(j)
t Ofit

( %
Ox
Oatan2(...)

low-dim space
('CC) y) 9? mj7$7 m.]ay)

0/q )
5y
Oatan2(...)

ox

_ 1(—ﬂ5w
q 5y
8\/6 1 1
*Fg.,: Y- = _ —
& ox 2 q26$( 1

Oy

_\/aéy 0 +\/§5$ \/5521

38



Range-Bearing Sensor Model

* Project the Jacobian to the (3 + 2N)-dimensional space

low H T 1( _\/6633 _\/a(sy 0 —|—\/§5$ \/§5y
t = ) —0 — —9 0
q Yy T q Yy X
(1 O 0 0---0 0 O
O 1 0 0---0 0 O
1 low 717 _ — 00 1 0.0 00
Ht p— Hthg’j FCB,j_ 0 0 O 00 ]_ 0
5x@+2M 1 0 0 0 0---0 0 1
N——
\ 2j—2

landmark j

o O O O




EKF for SLAM

B

1:

2:
3:

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

- gy o7y Done

=67 =&+ Done

Kt — it H?(Ht it H;:_F -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t
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EKF SLAM: Correction (1/2)

EKF_SLAM_Correction

2
_ [ oy 0
6 Q= ( "o )
7. for all observed features z; = (1, »)1 do
8: J = ¢
9: it landmark j never seen before
, Pjaxz \ _ [ Hta ri cos(¢; + fit,p)
10- _ — _ _|_ ?: . {L —
Fj.y Ht,y ri sin(¢f + fit,o)
11: endif
12: O = Oa ) = ( lf‘” B lftT )
Oy gy — Hty
13: qgq=10"0

S

14: “t = ( atan2(0y, 0x) — fit,0 )

)

41



EKF SLAM: Correction (2/2)

16:

17:
18:
19:
20:
21:

22:
23:

(

T,]

o OO O =
S oo = O
OO = OO

s

5’9
T

(Hy
(

Hi =1
t = gq

K! =%, H!

fiy = iy + Ki(2f —

o O O O

{CDCDOC)CD

2j—2

—v/@0y

—0p

£)

> = (I — K! H) %,

endfor
ft = [t
¥y =Y

return [is, 2t

O = O O O

—q
) Ef H’LT 1 Qf)

_—0 O O O

42



EKF for SLAM

1: Extended_Kalman filter(u:_1,>: 1, us, 2¢):

2: - o Done

3: —gr——G}—Ezfl—GtL%- Done

4: = ;gr 3 ? =L Done
D: —ﬁq,iﬁ-rl—léf@ﬁ—ﬁb%a— Done

0: %Hrgﬁ—gr Done

7 return [, 2t

43



EKF SLAM Algorithm

EKF_SLAM Prediction(u;—1, %¢—1, us, ¢, Ct, Ry):

4R

vt N3
2L cos p-1,6 —

thIf

0 —grcosp—1,0+t
0 ” “sin p—1,0+ 2
0

e h el e S ol o

Ry

—orsinpy_19 + 5 sin(pg—1,0 + wiAt)
cos(pe—1,0 + weAt)

cos(u,t 1,6 + wiAt)

sm(,u,t 1,0 + wiAt)
0

Iy

EKF_SLAM _Correction

o2 0
6: Q= ( 0 042 )
7:  for all observed features zi = (ri, ¢i)7
8: j=ct
9 if landmark j never seen before

10: (ﬁj,a: ) _ ( Lt )+( ri cos(¢ + fit,o) )
.y [ty Ty sin(gf + [ite)
11: endif
Oy Hiy — Hty
13: q=0"0
. i V4
14: ‘T ( atan2(dy, 0,) — fit.e
(1 0O 0 0---0 0 0 0---0\
o 1 0 0---0 0O O 0---0
) oo 10000 00
B Fei=10900 0010 00
o o0 o0 0---0 0O 1 0---0
\ 27-2 2N—2j)
. i1 V@ —/q0% 0  +/q0: /g0y |
17K = S S, 1T 4 Q)
18: Mt—Mt-I-K( —Zf)

19: S, =(1- K%H@)zt

20: endfor
210 pe =
22: Et Et

23: return py, 2y



.youtube.com/watch?v=SxR UP2P1B



https://www.youtube.com/watch?v=SxR_UP2P1BQ

Graph-based SLAM using Pose Graphs

46



Pose-Graph SLAM

* Graphs can be used to represent a set of robot poses where pairs of
poses are connected by edges that encode spatial constraints
between the robot poses.

" Graph represents the SLAM problem.
" Each node in the graph represents a pose of the robot during mapping
" Each edge between two nodes encodes a spatial constraint between them.

* Pose-Graph SLAM: Build the graph of robot poses and find a pose
configuration that minimize the error introduced by the constraints.

47



Pose-Graph SLAM

* Constraints connect the poses of the robot while it is moving.

* Constraints are inherently uncertain.

P> Robot pose Constraint

48



Pose-Graph SLAM

* Observing previously seen areas generates constraints between non-
successive poses.

P> Robot pose Constraint
49
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* Once we
have the
graph, we
determine
the most
likely map by
correcting
the nodes.

e Then, we can
render a map
based on the
known poses.



Overall SLAM System

* An overall SLAM system includes front-end and back-end that interact
with each other.

* A consistent map helps to determine new constraints by reducing the

search space.

* We first focus on the back-end for graph optimization.

raw
ata

node positions

v

Graph
Construction

(Front-End)

graph
(nodes & edges)

>

Graph
Optimization

(Back-End)

*
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Least Squares Optimization in General

* It is an optimization approach for computing a solution for an
overdetermined system:

" “More equations than unknowns”

* It minimizes the sum of the squared errors in the equations.

* It is a classic approach to a large set of problems:

" Graph optimization for SLAM

" \arious machine learning methods

53



Least Squares Optimization in General

* Given a problem described by a set of n observation functions:

{fi(x)}i=1:n
* Let
= X be the state vector
= Z; be a measurement of the state X

» Z; = f;(x) be afunction which projects X to a predicted measurement
* Given n noisy measurement Z1 -, about the state x
* Goal: Estimate the state X which best explains the measurements Zq -,

Recall: how is this done in probabilistic formulations?

54



Least Squares Optimization in General

f1(x) =24 Z1
. ;' fo(x) = zo 7

AN

fn(x) = zp, Zn

state predicted real
(unknown)| |measurements| |measurements




Error Function for Least Squares Optimization

* Error e; is often defined as the difference between the prediction
and the actual measurement:

e;(x) = z;— fi(x)

* We assume that the error has zero mean and is normally distributed.
= Gaussian error with covariance matrix {2, (also called information matrix)

* The squared error of a measurement depends only on the noisy
states and is a scalar:

€; (X) = €4 (X)Tﬂiei (X)

56



Graph Representation

* The graph is assumed to include n nodes X = Xq-,
* Each node X; is a robot pose at time ¢;

* A constraint encoded by the edge exists between the nodes if the
robot moves from X; to X;4 1

= Edge is computed using a motion model (e.g., odometry) -
= Measurements Zj; are obtained by sensors (e.g., GPS) 1@? a

o—® >
X \ Xi+1 _ 4 A
Y
The edge is estimated » p
using a motion model g

57



The Graph

* An edge also exists between the nodes if the robot observes the same
scene from X; and fromX;, computed iteratively by a motion model.

e Construct a “virtual measurement” about the position of X that is
seen from X; by using the environment as a reference.

» Edge represents the position of X seen from X; based on the observation.

P o o®

xj

Measurement from x; Measurement from X

58



Transformations

* How does X; sees X7
* Express this through transformations

e Let X; be transformation of
the origin into X;

* Let X; ! be the inverse transformation

* We can express relative
transformation X;lxj

* Transformations can be expressed
using homogenous coordinates

59



Transformations

* Homogenous coordinates (also called projective coordinates)

* Homogenous coordinates are widely used in projective geometry to provide
an alternative representation of gematric objects and translations.

* N-dimensional space expressed in N+1 dimensional space.
" Projection to homogeneous space: (. o )T & (2.4, 2. 1) = (a,b,c,d)T

T
L T a b c\" _ T
= Back-projection to 3D space: (a,b,c,d)” — (d’d’d) = (z,y,2)
100t 3D 3D
010t _(R3DP 0 [ R3D ¢
T™=loo1t R_(o 1) X_(o 1)
000 1
translation rotation rigid-body
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Transformations

* Transformations can be expressed
using homogenous coordinates.

e Estimation-Based edge:
—1
(X/g, Xj)

describes “how node i sees node j”

61



Pose Graph Formulation

* Measurements z;; are affected by noise (e.g., GPS).
* Covariance matrix for each edge (2;; to encode its uncertainty.

* The “bigger” €2, ;, the more the edge “matters” in the optimization.

177

observation (2, 9%;) —— edge
of X;fromX;

nodes
according to
the graph
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Error Function

* Error function for a single constraint

eij(xi, %) = t2v(Z ' (X; 1X;))

!
measurement

I

x; seen from Xx;

* Error as a function of the whole state vector

eij(x) = t2v(Z; ;1 (X; X))

e Error takes a value of O if
Zij = (X;'X;)
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Pose Graph Optimization

e Goal:

x* = argmin Zeg;-ﬂije@-j
v)

observation (2i5, ;) —— edge
of XjfromX;

nodes
according to
the graph

64



Optimization Using the Gauss-Newton Algorithm

* Define the error function

* |If nonlinear, linearize the error function
* Compute its derivative

* Set the derivative to zero

* Solve the linear system

* |terate this procedure until convergence

65



Pose Graph with Landmarks

*

. *
> A
*

' % Feature

“ < B> Pose

Constraint




Pose Graph with Landmarks

 Nodes can represent: X
P : SN *
= Robot poses >
* Landmark locations * ‘
e Edges can represent: < Y 4
" Pose displacement from a motion model <
*" Landmark location estimation
* The minimization optimizes the landmark % Feature
locations and robot poses B> pose

" E.g., in the (3+2N) space for 2D SLAM Constraint






https://www.youtube.com/watch?v=p-G98jGfZb4

SLAM Front-Ends
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Graph-Based SLAM

* Constraints are represented by the edges that connect the nodes
computed using a motion model.

e How to obtain the constraints?

%

P Robot pose Constraint P Robot pose Constraint

Bl a

| |

Y
)

%
>~

4

»

=]
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SLAM Front-End

* Front-end creates constraints that can be obtained from a motion
model (for short-term edges) and matching observations (for long-
term edges).

* Popular methods by matching observations: Dense scan-matching,
landmark-based matching, descriptor-based matching

node positions
¢ |

Graph Graph
% Construction ’ Optimization
(Front-End) graph (Back-End)

(nodes & edges)

*
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Problem Formulation

e Given: two corresponding point sets (e.g., obtained from LiDAR):

Q=141,---.an}  P=A{py,--.,Pu}
with correspondences C = {(i,7)}.

e Wanted: translation t and rotation R that minimizes the sum of the
squared error:

E(R.t)= )  la;—Rp;—t|
(4,5)eC

where p;and g, are corresponding points.
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Center of Mass

* The centers of mass of the corresponding points in both sets:
1 1
MQZ@Z% “P:mng’
(¢,J)€C (i,5)EC

* Mean-reduced points by subtracting the corresponding center of
mass for every point:

Q' {a, — ng} =1{q}}
P = {p; —pp}={p}}
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Orthogonal Procrustes Problem

* After translating to overlay the centers of mass for the two point-
clouds, minimizing:

2
E'(R) = |llg}---qn] — RIPY - - Pl %
is equivalent to minimizing:

E(Rt)= > |lg;—Rp; —t|’
(1,7)€C
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Point Alighment and Transformation

. !.'va-*"‘“;:?":“- N
»y PR AP A AN
-
RN R\ |

rotate

..Z.,-.s s’ 4
r"h"
o %

{

X |
g Y

B SEUIK T LN P

Image courtesy: Ju
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Point Alignment with Unknown Correspondence

* If correct correspondences are not known, it is generally impossible
to determine the optimal relative rotation/translation in one step

--- but we can iterate!
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Iterative Closest Point (ICP) Algorithm

* Key idea: iterate to find alignment.

* Two major steps:
= Data association (also called correspondence identification, matching)
o E.g., closest point, point-to-plane association, surface normal, local descriptor, etc.

" Transformation
* ICP converges if sharing positions are “close enough” with sufficient
overlap.

/\/‘” -_— 7
/ \ /ﬂ.
) S

77



Point-to-plane / Iteration 2

Point-to-point / Iteration 2

LcghbolgTi

//www.youtube.com/watch?v
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https://www.youtube.com/watch?v=LcghboLgTiA

Path Planning Using the Map
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Maps from Pose-Graph SLAM
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Grid Occupancy Maps

* Discretize the world into cells/grids (also called cell decomposition)
* Grid structure is rigid

* Each cell is assumed to be occupied or free space

* Non-parametric model

* Large maps require substantial memory resources

* Do not rely on a feature detector (e.g., no landmarks)
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Grid Occupancy Map Assumptions

1.

2.

3.

Each cell is a binary random variable 1
that models the occupancy

The world is static (most mapping

) ] always occupied
systems make this assumption)

always free space

no dependency
The cells (the random variables) between the cells

are independent of each other
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Path Planning on Grid Occupancy Maps

* The goal of path planning is to find a collision-free route from a
starting point to a target point (or from one pose to another pose).

* Path planning methods:
» Search-based methods
= Sampling-based methods

" Learning-based methods, e.g., reinforcement learning methods to find a
way through a maze
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Search-Based Methods

e Depth-first search (DFS)

= explores as far as possible along each branch before backtracking.

* Breath-first search (BFS)

= explores all cells at the present depth prior to moving on to the cells at the
next depth level.

* Dijkstra’s Algorithm: BFS + Priority

" Changes due to priority that accounts for edge costs

= Relaxation: Edit previous planned path only if new option is better
e A*: Dijkstra’s Algorithm + Heuristics

" Priority defined as cost to go + heuristic to goal
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DFS-55x45 BFS-55x45
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https://www.youtube.com/watch?v=GC-nBgi9r0U

Sampling-Based Methods

Probabilistic Roadmap
- T

* Probabilistic 35 & : -
Roadmap (PRM) 2 B
= Randomly sampling =1
nodes from the S 2f
map to create a 5 -
roadmap

10 I

= Query a path using = \

a graph search = - —— ——

algorithm (e.g., A*) %0 . 10 '20 30 40 504_-.3

X [meters]

Video credit: MathWorks, https://www.youtube.com/watch?v=-fePRPyeKnc
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https://www.youtube.com/watch?v=-fePRPyeKnc

Sampling-Based Methods

» Rapidly-exploring Random Tree (RRT)

= Search tree is built incrementally from
random nodes.

" Tree is expended with nearest neighbor
search.

* RRT*

= RRT* expands the tree in a similar way
like RRT.

= RRT* is an optimized version of RRT to
find a shortest path.

RRT*

Video credit: MathWorks

https://www.youtube.com/watch?v=-fePRPyeKnc
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