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Kalman Filter for State Estimation

Partial slide courtesy by K. Kitani and C. Stachniss



Kalman Filter
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Chapter 3.2, Sebastian Thrun, Wolfram Burgard and Dieter Fox. 
“Probabilistic Robotics.” MIT Press. 2005.
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Kalman Filter 

• Kalman filter is a Bayes filter for the linear Gaussian case.

• It performs recursive state estimation.
▪ Prediction/estimation step exploits the motion/control/action.

▪ Update/correction step exploits the observation/sensing/observation.

4How NASA used the Kalman Filter in the Apollo Program: https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program

https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/how-nasa-used-the-kalman-filter-in-the-apollo-program


Kalman Filter Example
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Bayes Filter and Kalman Filter

• Bayes filter is a mathematical tool for state estimation:
▪ Prediction/estimation:

▪ Correction/update:

• Kalman filter is an estimator for the linear Gaussian case.

• It is an optimal solution for linear models with Gaussian distributions.
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1D Example of Kalman Filter
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Motion Model
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Motion



Motion Model

• How can we represent the motion model                       ?
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Mean Standard Deviation 

• It is a linear Gaussian model.



Motion Model
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Visualization of this 
distribution from 
motion model:



Sensor Model
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Sensing

• How to represent the sensor / 
observation model?

• It is also a linear Gaussian model:



Sensor Model

• Visualization of the sensor model:
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Prior State Distribution

• Prior state distribution is assumed to be a linear Gaussian model:
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The 'cap' notation denotes 'estimate'



Prediction/Estimation

• How can we predict        given       ?
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https://mathworld.wolfram.com
/Convolution.html

• Prediction/Estimation: We use the prediction step to estimate the 
belief using the motion model

Mean of the new estimate:

Variance of the new estimate:

https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/Convolution.html


Correction/Update

• How can we update the estimated belief?
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• Correction/Update: We use the 
sensor model to update the 
estimated belief.

• Given the uncertainty (encoded 
by the variance) of the prediction 
and sensor estimate, which one 
should we trust more? 

• How to merge the information?



Correction/Update
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• Intuitively, the smaller variance 
means less uncertainty, so that we 
can trust it more.

• Thus, we want a weighted state 
estimate correction.

• Something like this:



Correction/Update

• This happens naturally in the Bayes filtering (with Gaussians) framework:
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new mean: new variance:

‘plus’ sign denotes post ‘update’ estimate (posterior)

mean: mean:
variance:variance:



Correction/Update

• As a recall from a math class…
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Correction/Update

• With a little algebra, we get a weighted state estimate correction:
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Kalman Gain

• With more algebra, we can rewrite the new mean and variance as: 
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Kalman gain Innovation



Moving to General Kalman Filter

• Everything is multi-variant Gaussian:

21



Linear Models for Kalman Filter

• Kalman filter assumes linear models for motions and observations.

• Kalman filter assumes zero mean Gaussian noise in the linear models:
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Linear Gaussian Motion Model

• We can represent the linear motion model

   as a Gaussian probability distribution for the Bayes filter framework:

   where         is covariance that encodes the noise of the motion.
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Linear Gaussian Sensor Model

• We can also represent the linear sensor model

   as a Gaussian probability distribution for the Bayes filter framework:

   where         is covariance that encodes the noise of the sensor.
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General Kalman Filter Variables 

•        : Matrix (𝑛 × 𝑛) that describes how the state evolves from 𝑡 − 1 
to 𝑡 without control or noise.     
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•        : Matrix (𝑛 × 𝑙) that describes how the control 𝑢𝑡 changes the 
state from 𝑡 − 1 to 𝑡.     

•        : Matrix (𝑘 × 𝑛) that describes how to map/project the state 𝑥𝑡  
to an observation 𝑧𝑡.     

•         and       : Random variables representing the motion and sensor 
noise that are assumed to be independent and normally distributed 
with covariance       and       respectively.



General Kalman Filter Algorithm
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(Slide 23)

(Slide 24)

(Slide 20)



General Kalman Filter Algorithm
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(Slide 23)

(Slide 24)

(Slide 20)



General Kalman Filter Algorithm

28

(Slide 23)

(Slide 24)

(Slide 20,
in 1D)



General Kalman Filter Algorithm
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is the mean and        is the covariance of the distribution of 

(Slide 23)

(Slide 24)

(Slide 20,
in 1D)



2D Example of Kalman Filter
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2D Example of Kalman Filter
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2D Example of Kalman Filter

• To track the robot (with 
constant position):
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Extended Kalman Filter (EKF)
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Chapter 3.3, Sebastian Thrun, Wolfram Burgard and Dieter Fox. 
“Probabilistic Robotics.” MIT Press. 2005.



Motivation of EKF

• Motion model of the 
basic Kalman filter 
must be linear.
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Motivation

• But motion is not 
always linear; actually, 
in most cases, it is 
nonlinear.

• Can we use the Kalman 
Filter with nonlinear 
motion models?
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• How to deal with non-linear models?



Extended Kalman Filter
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•  Uses local linearization 
(linear approximations) of 
model to keep the 
effectiveness of the KF 
framework.

• EKF does not assume 
linear models.

• It assumes Gaussian noise.



Extended Kalman Filter
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Motion Model Linearization
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Jacobian Visualization

• Jacobian is the orientation of the tangent plane to a multi-variant 
function at a given point, i.e., slope of the function.

• It generalizes the gradient (or tangent line) of a single-variant function.
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Sensor Model Linearization
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EKF Algorithm 
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42
https://www.youtube.com/watch?v=iTe6-lLp5iM

https://www.youtube.com/watch?v=iTe6-lLp5iM
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https://www.youtube.com/watch?v=NVf9uUJV7QY

https://www.youtube.com/watch?v=NVf9uUJV7QY


EKF 2D Example
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EKF 2D Example
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EKF 2D Example

• Linearize the sensor/measurement model
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• Linearize the observation/measurement model



Problems with EKFs

• Taylor series expansion = poor approximation of non-linear functions, 
success of linearization depends on 
▪ Limited uncertainty and 
▪ Limited amount of local non-linearity

• Computing partial derivatives is a pain

• Cannot handle multi-modal (multi-hypothesis) distributions

• What’s next?
▪ Unscented Kalman Filter (how to better generalize to non-linear models)
▪ Non-Gaussian noise Kalman Filter (how to generalize the Kalman Filter when 

noise distribution is Non-Gaussian)
▪ Stability and Divergence (how to design a stable KF that does not diverge)
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