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Robot Learning



Why Robot Learning?

• Traditional robots were designed 
for special purposes, e.g., in 
automotive manufacturing:
▪ Welding, assembly, painting / 

sealing / coating, part transfer, 
material removal, etc.

• Characteristics:
▪ Structured environments.

▪ Specific tasks & procedures.

▪ Pre-programmed robots.

2
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Why Robot Learning?

• Programming robots is hard:
▪ Huge number of possible tasks 

that may be changing and new.

▪ Tasks difficulty to describe 
formally.

▪ Unstructured environments 
potentially in open worlds.

▪ Humans in the loop.

• Expert engineering may be 
impractical.
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• Robot learning is one of the most promising solutions.



Definition and Scope

• Robot learning is a subfield in robotics: 
▪ to study techniques allowing a robot to acquire new skills or adapt to its 

environment, 

▪ by training computational models 
from historical experience. 
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• Robot learning is considered as 
one aspect of robot cognition.

• Key challenge in robot learning:
bridge perception and action, or
close the perception-action loop.



Definition and Scope

• Given the popularity of machine learning, it is safe to say that robot 
learning applies machine learning within the robotics community.

• However, the above statement is not 100% accurate.

• Robot learning is in the intersection of:
▪ Machine learning.
▪ Adaptive control: automatically adjusts 

controller parameters to compensate 
for changing process conditions.

▪ Developmental robotics: studies the 
developmental mechanisms, architectures 
and constraints that allow lifelong and 
open-ended learning of new skills and new 
knowledge in embodied machines.
o Can a robot learn like a child?
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Definition and Scope

• Broader scope of robot learning (defined by IEEE): 
▪ learning models of robots, tasks or environments

▪ learning deep hierarchies or levels of representations, from sensor and motor 
representations to task abstractions

▪ learning of plans and control policies by imitation and reinforcement learning

▪ integrating learning with control architectures

▪ methods for probabilistic inference from multi-modal sensory information 
(e.g., proprioceptive, tactile, vison)

▪ structured spatio-temporal representations designed for robot learning such 
as low-dimensional embedding of movements

▪ developmental robotics and evolutionary-based learning approaches

8

https://www.ieee-ras.org/robot-learning


How can a robot learn to perform a task?
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Credit: PR2 Robot / Willow Garage



How to teach robot to do a task?

• How to teach a robot to flip pancakes?

• How about teaching a robot to play table tennis with a human?

10



Learning from Demonstration

• Learning from demonstration (LfD) is an end-user development 
technique for teaching a robot new behaviors by demonstrating the 
task to transfer directly instead of programming it through machine 
commands.

• Robot LfD started in the 1980s and has grown steadily in importance.

• At the core, LfD is inspired by the way humans learn from being 
guided by experts, from infancy through adulthood. 

• A large body of work on LfD therefore takes inspiration from concepts 
in psychology and biology.

• Nowadays, the vast majority of work on LfD follows a machine 
learning approach.
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Learning from Demonstration

• LfD is also called:
▪ Programming by 

Demonstration 

▪ Imitation Learning

▪ Apprenticeship Learning
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Reference: Sylvain Calinon and Aude Billard. "Incremental learning of gestures by imitation in a humanoid robot." In Proceedings 
of the ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2007.



Learning from Demonstration
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Learning by Demonstration
What should be imitated?

Intention, dynamics, or poses?

Demonstration Perception
How are actions perceived?

How is information represented?

Motion Actuation
How is information transferred and 
implemented on a physical robot?



Learning from Demonstration
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Learning from Demonstration

• Prior to building capability in robots, we often want to understand 
how the equivalent capability works in humans and animals –
biological inspiration:
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Rolf Pfeifer, Max Lungarella, and Fumiya Iida. "Self-
organization, embodiment, and biologically inspired 
robotics." Science, no. 5853, pp. 1088-1093. 2007.

FESTO
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Learning from Demonstration
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Biological Inspiration: Human Imitation 

• “True” imitation: Ability to learn new actions not part of the usual 
repertoire, by humans only, and possibly great apes.

• “True” imitation is differentiated from copying (flocking, schooling, 
following), stimulus enhancement, or contagion.
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Reference: Whiten & Ham, Advances in the Study of Behaviour, 1992.



Biological Inspiration: Human Imitation 

• Newborns to 3-month infants: Innate facial imitation.

• Imitating tongue and lips protrusion, mouth-opening, head 
movements, cheek and brow motion, eye blinking.

• Delayed imitation up to 24 hours.

• Imitation is mediated by a 
stored representation.
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Slide modified from Prof. Aude Billard

References:
Meltzoff & Moore, Early Development and Parenting, 1997.
Meltzoff & Moore, Developmental Psychology, 1989.



Biological Inspiration: Human Imitation 

• 9-12-month infants: Deferred and delayed imitation of novel 
behavior.

• 67% of the infants who saw 
the display reproduced the 
act after the week's delay, 
as compared to 0% of the 
control infants who had not 
seen the novel display.
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Slide modified from Prof. Aude Billard



Biological Inspiration: Human Imitation 

• 14-month infants: Imitation of new action to achieve the same goal 
only if they consider it to be the most rational alternative.

21
Slide modified from Prof. Aude Billard



Biological Inspiration: Human Imitation 

• 18-month infants:
▪ Differentiate between human and machine demonstration. 

▪ Learn from unsuccessful examples.
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Reference: Meltzoff, Dev. Psychol. 31, 1995.

Slide modified from Prof. Aude Billard



Biological Inspiration: Human Imitation 

• Children:
▪ Imitation is hierarchical and goal-directed.

▪ Single-hand motions: accurate ipsilateral imitation, 
48% substitution for cross-lateral imitation.

▪ Two-hand motions: only 10% substitution for 
cross-lateral imitation.

▪ Two-phase motion eliminates mistakes.

▪ Adding constraints of hand gestures increases 
mistakes.
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Biological Inspiration: Human Imitation 

• Adults:
▪ Imitation reaches the highest level of 

complexity.

▪ Imitation is present in all learning 
activities.

▪ Imitation in adulthood is influenced by 
movement observation, handedness, 
orientation of the demonstrator.

▪ Social influence in establishing group 
norms, collective frame of reference, 
transmission of phobias.
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Biological Inspiration: Human Imitation 

• Advantages: When is imitation useful?
▪ It is a powerful paradigm of transferring skills to perform tasks.

▪ It speeds up the learning process by showing possible solutions or conversely 
by showing bad solutions.

• Disadvantages: When is imitation not useful?
▪ Inappropriate: When a good solution for the teacher is not a possible solution 

for the learner (when not considering adaptation and reinforcement).

▪ Disadvantageous: When it induces you in error from a bad teacher.
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FESTO Robotic Bird: https://www.youtube.com/watch?v=Fg_JcKSHUtQ

https://www.youtube.com/watch?v=Fg_JcKSHUtQ


Learning from Demonstration
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Mathematical Background

• 1-D Gaussian (normal) distribution has a characteristic symmetric bell 
curve that quickly falls off towards 0.
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Mathematical Background

• Multivariate Gaussian distributions in the n-D space                   :

• Given a multivariate Gaussian distribution, its marginals, conditionals, 
and linear transformations are also Gaussian.
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Mathematical Background

• Gaussians are very common in probability theory and important in 
statistics, which are also widely used in machine learning.

• Physical quantities that are expected to be the sum of many 
independent processes often have distributions that are nearly 
Gaussian (e.g., sensor noise).

• Gaussians are useful because of the central limit theorem:
▪ Taking sufficiently large independent and identically distributed (i.i.d.) 

samples, the distribution of the samples will be approximately normally 
distributed.
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Mathematical Background

• Gaussian Mixture Models (GMM)
▪ A mixture model is a probabilistic model, which assumes the underlying data 

belongs to a mixture distribution.
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Mathematical Background

• Gaussian Mixture Models (GMM)
▪ GMM computes the probability using a mixture of 𝐾 Gaussians:

▪ GMM can generate data points (samples) in two steps:
o Select which component 𝑖 the data point belongs to according to the 

multinomial distribution of (𝑤1, … , 𝑤𝐾).

o Generate the data point according to the probability of the 𝑖-th component.

• Gaussian Mixture Regression (GMR)
▪ Given a GMM, a GMR is used to compute the conditional distribution to 

generate data that satisfies certain condition, e.g.,                    .
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where



LfD by GMM and GMR

• In this example, kinesthetic demonstrations (e.g., a sequence of 
locations),           , are provided by holding the robot’s arm to draw.
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LfD by GMM and GMR

• Demonstrations can be modeled as GMMs.
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LfD by GMM and GMR

• GMR is used to retrieve the trajectory, namely the expected position 
at each time step:
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LfD by GMM and GMR

• Examples of grasping:
▪ GMM encodes the trajectory. 

▪ GMR retrieves the trajectory. 

• Robustness to perturbations:
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LfD and RL for Learning Robot Table Tennis: https://www.youtube.com/watch?v=SH3bADiB7uQ

https://www.youtube.com/watch?v=SH3bADiB7uQ


Problems to Implement GMM/GMR-based LfD

• How to provide demonstrations to a robot?

• How to estimate the parameters of a Gaussian or GMM?
▪ Using data for learning or training computational models

• How to estimate the number of Gaussian component in a GMM?
▪ Deciding hyperparameter values

• How to align the demonstrated trajectories with different speed?
▪ Data preprocessing
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Providing Demonstrations

39Ravichandar, Harish, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. "Recent advances in robot learning from 
demonstration." Annual Review of Control, Robotics, and Autonomous Systems, issue.3, pp.297-330, 2020.



Estimating Parameters

• To estimate parameters of a Gaussian, we may use maximum-
likelihood estimation (MLE) to find the parameters under which the 
data is most likely for that model:
▪ Likelihood function:

▪ The likelihood is thought of as a function of the parameters      where the 
data      is fixed.

▪ In the MLE problem, our goal is to find the      that maximizes      or log of     :
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Estimating Parameters

• Does MLE work for GMMs?
▪ The answer is no…

▪ Since the data points are not from the identical Gaussian components.

• To estimate parameters with hidden variables, we may use the classic 
Expectation-maximization (EM) algorithm:
▪ EM is an iterative method to find maximum likelihood estimates of 

parameters in statistical models, where the model depends on unobserved 
latent variables.

41
Credit: Victor Lavrenko



Estimating Parameters

• Given measurements 𝑥1, … , 𝑥𝑛:
▪ 𝐾 = 2 components with unknown parameters.

▪ If the source of each observation is known,
estimation is trivial.

▪ If we know parameters of the Gaussians, we 
can estimate which component that each 
observation comes from. 

42Credit: Victor Lavrenko



Estimating Parameters

• With hidden variables, it is a chicken and egg problem:
▪ We need (𝜇𝑎, 𝜎𝑎

2) and (𝜇𝑏, 𝜎𝑏
2) to estimate the source of the observations.

▪ We need to know the source to estimate (𝜇𝑎, 𝜎𝑎
2) and (𝜇𝑏, 𝜎𝑏

2). 

• EM algorithm overview:
▪ Start with randomly initialization of the Gaussians (𝜇𝑎, 𝜎𝑎

2) and (𝜇𝑏, 𝜎𝑏
2). 

▪ E-step: for each observation 𝑥𝑖, compute 𝑃 𝑎 𝑥𝑖 and 𝑃 𝑏 𝑥𝑖 to estimate 
which Gaussian component it comes from.

▪ M-step: update (𝜇𝑎, 𝜎𝑎
2) and (𝜇𝑏, 𝜎𝑏

2) of the Gaussians to fit points assigned 
to them. 

▪ Iterate until convergence.
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Estimating Hyperparameters

• Broadly, estimating # Gaussian components in GMMs is a 
hyperparameter estimation or model selection problem.

• Model Selection: Given different models defined by different hyper-
parameter values, select the best model (i.e., the hyperparameter 
resulting in best performance).

• Many methods exist based on different criteria:
▪ Cross-validation methods: use different portions of the data to train and 

validate a model.

▪ Information-based methods, e.g., Bayesian information criterion (BIC): 
balance between likelihood and model complexity. 

• Occam’s razor: pick “simplest” of all models that fit.
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Aligning Trajectories

• Trajectory alignment is common when providing demonstrations for 
path/motion planning, and other time-series data.

• Dynamic Time Warping (DTW) aligns two sequences by warping the 
time axis iteratively until an optimal match between the two 
sequences is found.
▪ DTW is a time series alignment algorithm developed originally for speech 

recognition.

▪ Consider two trajectories (sequences of data points):

45Sakoe,H. and Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. on 
Acoust., Speech, and Signal Process., ASSP 26, 43-49 (1978).



Aligning Trajectories

• The two sequences are arranged on the sides 
of a grid, with one on the top and the other 
up the left-hand side.

• Both sequences start on the bottom left of 
the grid.

• Inside each cell a distance measure can be 
placed, comparing the corresponding 
elements of the two sequences.

• To find the best match or alignment between 
these two sequences, one need to find a path 
through the grid, which minimizes the total 
distance between them.

• This shortest path can be found using 
dynamic programming.
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Aligning Trajectories
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