
Problems with EKFs

• Taylor series expansion = poor approximation of non-linear functions, 
success of linearization depends on 
▪ Limited uncertainty and 
▪ Limited amount of local non-linearity

• (Manually) calculating partial derivatives is a pain

• Cannot handle multi-modal (multi-hypothesis) distributions

• What’s next?
▪ Unscented Kalman Filter (how to better generalize to non-linear models)
▪ Non-Gaussian noise Kalman Filter (how to generalize the Kalman Filter when 

noise distribution is Non-Gaussian)
▪ Stability and Divergence (how to design a stable KF that does not diverge)
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COMPSCI-603: Robotics
Simultaneous Localization and 

Mapping (SLAM)

Partial slide courtesy by C. Stachniss



SLAM Overview

• Simultaneous Localization 
and Mapping (SLAM) builds 
a map of the environment 
from a mobile robot (or a 
mobile sensing platform).

• At the same time, SLAM 
localizes the mobile robot 
in the map build so far.

• SLAM is a chicken-and-egg 
problem.
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Credit: DARPA Subterranean Challenge
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https://www.youtube.com/watch?v=fCHOU-fw2c0

https://www.youtube.com/watch?v=fCHOU-fw2c0


SLAM Applications
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Guanwei Jia, Xiaoying Li, 
Dongming Zhang, Weiqing Xu, 
Haojie Lv, Yan Shi, and Maolin 
Cai. "Visual-SLAM Classical 
framework and key 
Techniques: a review." Sensors 
22, no. 12 (2022): 4582.



Extended Kalman Filter (EKF)-based SLAM
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Definition of the SLAM Problem

• Given
▪ Controls

 
▪ Observations

 

• Wanted
▪ Map of the environment

 
▪ Path (or current pose) of the robot
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or



EKF SLAM

• SLAM can be formulated under the Bayes filtering framework to 
estimate:

• Extended Kalman Filter (EKF) can 
be used to solve the SLAM problem.
▪ Kalman Filter is a recursive Bayes 

Filter for the linear Gaussian case.

▪ EKF for dealing with non-linearities.
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Recall EKF
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Estimation using nonlinear 
motion model 𝑔

Correction using nonlinear 
sensor model ℎ



EKF SLAM

• EKF SLAM applies EKF to SLAM.

• EKF SLAM estimates robot’s pose and locations of landmarks (e.g., 
points in the world) in the environment.

• State space (for the 2D plane) is:

▪ Robot pose includes 𝑥, 𝑦, and 𝜃.

▪ Landmark locations includes 𝑥 and 𝑦 coordinates.

▪ Assumption (for now): known landmark correspondences.

10



EKF SLAM

• Map with 𝑛 landmarks: (3 + 2𝑛)-dimensional Gaussian.

• Belief is represented by:
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EKF SLAM Steps

1. State prediction

2. Landmark prediction

3. Measurement

4. Data association

5. Update
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More compact math notation



EKF SLAM Overview: Initialize State
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EKF SLAM Overview: Predict State
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EKF SLAM Overview: Predict Landmark Locations
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EKF SLAM Overview: Obtain Measurement
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EKF SLAM Overview: Perform Data Association

17



EKF SLAM Overview: Update State
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EKF SLAM

• Setup

▪ Moves in a 2D space 

▪ Observation of point landmarks

▪ Known number of landmarks

▪ Known data association

▪ Range-bearing sensor

▪ Velocity-based motion model
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Velocity-Based Motion Model
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• Arc length:

𝑙 = 𝑣 ⋅ ∆𝑡 = 𝑟 ⋅ 𝑤∆𝑡

• Rotation radius:

r =
𝑣

𝑤

• Circle center:

xc = x − r ⋅ cos θ − 90
     = x − r ⋅ sin θ

yc = y − r ⋅ sin θ − 90
     = x + r ⋅ cos θ

𝑤∆𝑡

𝑣∆𝑡

x′, y′

θ − 90

𝑤∆𝑡



𝑤∆𝑡

𝑣∆𝑡

x′, y′

θ − 90

𝑤∆𝑡

Velocity-Based Motion Model
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• New pose after Δ𝑡:

r =
𝑣

𝑤

x′ = xc + r ⋅ cos θ − 90 + 𝑤Δ𝑡
     = xc + r ⋅ sin θ + 𝑤Δ𝑡

y′ = yc + r ⋅ sin θ − 90 + wΔt
     = yc − r ⋅ cos θ + wΔt

xc



EKF for SLAM: Predict State Using Motion

• Goal: Update state space based on the motion.

• Velocity-based motion model in the 2D plane:

• How to map this motion model in 3D space to the (3 + 2𝑁)-
dimensional state space in the EKF-SLAM?
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EKF for SLAM: Initialize State

• Platform starts in its own reference frame (all landmarks unknown).

• State has (3 + 2𝑁) dimensions:
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EKF for SLAM
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EKF for SLAM: Update State

• From the motion in the plane:

• To the (3 + 2𝑁)-dimensional state space:

25: Projection function that projects variables from 3D space to the 3 + 2𝑁 space



EKF for SLAM
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Done



EKF for SLAM: Update Covariance

• The motion model only affects the motion of the robot, but NOT the 
landmarks.

• Representing the motion model’s Jacobian in the (3 + 2𝑁) space:
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Jacobian of Motion Model
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Jacobian of Motion Model

29



Jacobian of Motion Model
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Jacobian of Motion Model
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EKF for SLAM
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Done



Summary of Estimation in EKF for SLAM
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Projection function that projects variables 
from 3D space to the 3 + 2𝑁 space

(3 + 2𝑁) x 1

3 x (3 + 2𝑁)

3 + 2𝑁  x (3 + 2𝑁)

3 + 2𝑁  x (3 + 2𝑁)



EKF for SLAM
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Done

Done



EKF SLAM: Correction in EKF for SLAM

• Assume know data association on landmarks:
▪                :  𝑖-th measurement at time 𝑡 observes the landmark with index 𝑗.

• If a landmark is observed for the first time, initialize the landmark.

• Compute the expected observation based on sensor model

• Calculate the Jacobian 𝐻 of a sensor model ℎ.

• Proceed with computing the Kalman gain.
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Range-Bearing Sensor Model

• We use range-bearing observations, 
for observation beam 𝑖:

• If a landmark has not been observed, we can initialize it with:
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location of 
landmark 𝑗

estimated location 
of the robot

relative measurement
from beam 𝑖



Range-Bearing Sensor Model

• Convert between 2D location 
and range-bearing 
observation for landmark 𝑗:

• Compute the Jacobian:
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low-dim space



• Jacobian:

• E.g.,: 

Range-Bearing Sensor Model
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low-dim space



Range-Bearing Sensor Model
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• Project the Jacobian to the (3 + 2𝑁)-dimensional space

landmark 𝑗

5 x (3 + 2𝑁)

2 x 5



EKF for SLAM
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Done

Done



EKF SLAM: Correction (1/2)
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EKF SLAM: Correction (2/2)
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EKF for SLAM
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Done

Done

Done

Done

Done



EKF SLAM Algorithm
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45
https://www.youtube.com/watch?v=SxR_UP2P1BQ

https://www.youtube.com/watch?v=SxR_UP2P1BQ


Graph-based SLAM using Pose Graphs
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Pose-Graph SLAM

• Graphs can be used to represent a set of robot poses where pairs of 
poses are connected by edges that encode spatial constraints 
between the robot poses.
▪ Graph represents the SLAM problem.

▪ Each node in the graph represents a pose of the robot during mapping

▪ Each edge between two nodes encodes a spatial constraint between them.

• Pose-Graph SLAM: Build the graph of robot poses and find a pose 
configuration that minimize the error introduced by the constraints.
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Pose-Graph SLAM

• Constraints connect the poses of the robot while it is moving.

• Constraints are inherently uncertain.
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Pose-Graph SLAM

•  Observing previously seen areas generates constraints between non-
successive poses.
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Map constructed using odometry only Adding a pose graph to SLAM

KUKA Halle 22, courtesy of P. Pfaff
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• Once we 
have the 
graph, we 
determine 
the most 
likely map by 
correcting 
the nodes.

Pose-Graph SLAM Example

• Then, we can 
render a map 
based on the 
known poses.



Overall SLAM System

• An overall SLAM system includes front-end and back-end that interact 
with each other.

• A consistent map helps to determine new constraints by reducing the 
search space.

• We first focus on the back-end for graph optimization.
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Least Squares Optimization in General

• It is an optimization approach for computing a solution for an 

overdetermined system:

▪ “More equations than unknowns”

• It minimizes the sum of the squared errors in the equations.

• It is a classic approach to a large set of problems:

▪ Graph optimization for SLAM

▪ Various machine learning methods
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Least Squares Optimization in General

• Given a problem described by a set of 𝑛 observation functions:

• Let
▪        be the state vector

▪        be a measurement of the state

▪                             be a function which projects      to a predicted measurement 

• Given 𝑛 noisy measurement            about the state  

• Goal: Estimate the state      which best explains the measurements 
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Recall: how is this done in probabilistic formulations?



Least Squares Optimization in General
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Error Function for Least Squares Optimization

• Error       is often defined as the difference between the prediction 
and the actual measurement:

• We assume that the error has zero mean and is normally distributed.
▪ Gaussian error with covariance matrix         (also called information matrix) 

• The squared error of a measurement depends only on the noisy 
states and is a scalar:
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Graph Representation

• The graph is assumed to include 𝑛 nodes 

• Each node        is a robot pose at time     

• A constraint encoded by the edge exists between the nodes if the 
robot moves from         to
▪ Edge is computed using a motion model (e.g., odometry)

▪ Measurements         are obtained by sensors (e.g., GPS)
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The edge is estimated 
using a motion model



The Graph

• An edge also exists between the nodes if the robot observes the same 
scene from       and from      , computed iteratively by a motion model.

• Construct a “virtual measurement” about the position of        that is 
seen from        by using the environment as a reference.
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▪ Edge represents the position of        seen from       based on the observation.



Transformations

• How does        sees       ? 

• Express this through transformations 

• Let       be transformation of 
the origin into 

• Let          be the inverse transformation 

• We can express relative 
transformation 

• Transformations can be expressed 
using homogenous coordinates
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Transformations

• Homogenous coordinates (also called projective coordinates)
▪ Homogenous coordinates are widely used in projective geometry to provide 

an alternative representation of gematric objects and translations.
▪ N-dimensional space expressed in N+1 dimensional space.
▪ Projection to homogeneous space:

▪ Back-projection to 3D space:
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Transformations

• Transformations can be expressed 
using homogenous coordinates.

• Estimation-Based edge:
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describes “how node 𝑖 sees node 𝑗” 



Pose Graph Formulation

• Measurements        are affected by noise (e.g., GPS). 

• Covariance matrix for each edge          to encode its uncertainty. 

• The “bigger”        , the more the edge “matters” in the optimization.
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Error Function

• Error function for a single constraint 

• Error as a function of the whole state vector

 

• Error takes a value of 0 if 

63



Pose Graph Optimization

• Goal: 
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Optimization Using the Gauss-Newton Algorithm

• Define the error function 

• If nonlinear, linearize the error function 

• Compute its derivative 

• Set the derivative to zero 

• Solve the linear system 

• Iterate this procedure until convergence
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Pose Graph with Landmarks
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Pose Graph with Landmarks

• Nodes can represent:
▪ Robot poses

▪ Landmark locations

• Edges can represent:
▪ Pose displacement from a motion model

▪ Landmark location estimation

• The minimization optimizes the landmark
locations and robot poses 
▪ E.g., in the (3+2N) space for 2D SLAM
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68
https://www.youtube.com/watch?v=p-G98jGfZb4

https://www.youtube.com/watch?v=p-G98jGfZb4


SLAM Front-Ends
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Graph-Based SLAM

• Constraints are represented by the edges that connect the nodes 
computed using a motion model.

• How to obtain the constraints?
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SLAM Front-End
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• Front-end creates constraints that can be obtained from a motion 
model (for short-term edges) and matching observations (for long-
term edges).

• Popular methods by matching observations: Dense scan-matching, 
landmark-based matching, descriptor-based matching



Problem Formulation

• Given: two corresponding point sets (e.g., obtained from LiDAR):

   with correspondences                       .

• Wanted: translation 𝑡 and rotation 𝑅 that minimizes the sum of the 
squared error:

 

   where       and      are corresponding points.
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Center of Mass

• The centers of mass of the corresponding points in both sets:

• Mean-reduced points by subtracting the corresponding center of 
mass for every point:
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Orthogonal Procrustes Problem

• After translating to overlay the centers of mass for the two point-
clouds, minimizing:                                                     

is equivalent to minimizing:
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Point Alignment and Transformation
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Point Alignment with Unknown Correspondence

• If correct correspondences are not known, it is generally impossible 
to determine the optimal relative rotation/translation in one step
--- but we can iterate! 
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Iterative Closest Point (ICP) Algorithm

• Key idea: iterate to find alignment.

• Two major steps:
▪ Data association (also called correspondence identification, matching) 

o E.g., closest point, point-to-plane association, surface normal, local descriptor, etc.

▪ Transformation

• ICP converges if sharing positions are “close enough” with sufficient 
overlap.
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https://www.youtube.com/watch?v=LcghboLgTiA

https://www.youtube.com/watch?v=LcghboLgTiA


Path Planning Using the Map
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Maps from Pose-Graph SLAM
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Grid Occupancy Maps

• Discretize the world into cells/grids (also called cell decomposition)

• Grid structure is rigid

• Each cell is assumed to be occupied or free space

• Non-parametric model

• Large maps require substantial memory resources

• Do not rely on a feature detector (e.g., no landmarks)
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Grid Occupancy Map Assumptions

1. Each cell is a binary random variable 
that models the occupancy

2. The world is static (most mapping 
systems make this assumption)

3. The cells (the random variables) 
are independent of each other
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Path Planning on Grid Occupancy Maps

• The goal of path planning is to find a collision-free route from a 
starting point to a target point (or from one pose to another pose).

• Path planning methods:

▪ Search-based methods

▪ Sampling-based methods

▪ Learning-based methods, e.g., reinforcement learning methods to find a 
way through a maze
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Search-Based Methods

• Depth-first search (DFS) 
▪ explores as far as possible along each branch before backtracking.

• Breath-first search (BFS) 
▪ explores all cells at the present depth prior to moving on to the cells at the 

next depth level.

• Dijkstra’s Algorithm: BFS + Priority
▪ Changes due to priority that accounts for edge costs

▪ Relaxation: Edit previous planned path only if new option is better

• A*: Dijkstra’s Algorithm + Heuristics
▪ Priority defined as cost to go + heuristic to goal
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https://www.youtube.com/watch?v=GC-nBgi9r0U

https://www.youtube.com/watch?v=GC-nBgi9r0U


Sampling-Based Methods

• Probabilistic 
Roadmap (PRM)

▪ Randomly sampling 
nodes from the 
map to create a 
roadmap

▪ Query a path using 
a graph search 
algorithm (e.g., A*)
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Video credit: MathWorks, https://www.youtube.com/watch?v=-fePRPyeKnc

https://www.youtube.com/watch?v=-fePRPyeKnc


Sampling-Based Methods

• Rapidly-exploring Random Tree (RRT)

▪ Search tree is built incrementally from 
random nodes.

▪ Tree is expended with nearest neighbor 
search.

• RRT*

▪ RRT* expands the tree in a similar way 
like RRT.

▪ RRT* is an optimized version of RRT to 
find a shortest path.
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RRT*

Video credit: MathWorks
https://www.youtube.com/watch?v=-fePRPyeKnc

https://www.youtube.com/watch?v=-fePRPyeKnc
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