COMPSCI-603: Robotics

Robot Learning

Robot Decision Making and Planning

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

2

Robot Decision Making and Planning

e Robots need to make various decisions and
construct different plans, for example:
= Decision making.

" Planning: task planning, motion planning
(e.g., for robotic arms), and path planning
(e.g., for mobile robotics).

e Decision making and planning characteristics:
= Reactive (one-time) decision making versus sequential planning.
= Certain versus uncertain scenarios.
= Observable versus partially observable space.

Common Scenarios of Planning

* Deterministic, fully observable:
= Agent knows exactly which state it is in.
= Agent action is executed as expected.

* Stochastic, partially observable:

= Observations provide new information
about current state with uncertainty.

= Robot actions may not be successfully
eXeCUtEd. Initial point :"' e

Destination

30fsec] e

L NOn-Observab|eI ‘.f‘f.;“ £ N 180 [sec]
= Agent may have no idea where it is.

Example: Vacuum World

* Observable:
= Start in #5
= Actions: [Right; Suck]

* Non-observable:
= Startin {1,2;3;4,5,6,7,8}
= E.g., action Right goes to {2;4,6,8}
= Actions: [Right; Suck; Left; Suck]

 Partially observable:
= Start in #5, local sensing only

= Stochastic actions, suck can make a clean
carpet dirty

= Actions: [Right; if dirt then Suck]

oA 2 =]

g | % o2g | oi%

=) 4 =)

i 2%

=] 6 =]
o8 olg

=] 8 =]

Possible actions: left, right, suck

Example: Vacuum World (observable, deterministic actions)

 States: cross product of
robot locations and

dirtiness L =) A \r
, , WL oo |2 |
e Actions: Left, Right, Suck, M= -
NoOp " il S
. . _ - = R - N R = —~
Succesfsor function: L= - . AN N R —ar
Left/Right changes X all - I, Wk | N/
. VA G 7 X
location, Suck changes -, g g),
dirtiness ’
. /N L~
* Goal: no dirt L[| = =4 |r
. . .] - - %
Cost: 1 per action (0 for D C
- -

NoOp), also called penalty,
utility, or reward

Example: Vacuum World (non-observable, deterministic actions)

L
| B l — .
[y [) n- * Definition of states is
’ * LR A =L different in the case of

|
I
. J [non-observable
. s W vacuum world.

= . e If actions are

“ | L ‘L stochastic, action
N ehalll s M=l successor function is
' R also defined

[L] [differently.

Planning under Uncertainty

* In unstructured environments, robot decision making and planning
must be performed under uncertainty.

= Uncertainty in action outcomes, i.e., stochastic action
= Uncertainty in state of knowledge
= Any combination of the two

s1
0.802 ‘
G/O:; s2
SO T—23 3

\07 |
s4

Stochastic actions Uncertain knowledge

Planning under Uncertainty

* Decision tree provides a classic solution to decision making under
uncertainty:

s

./\,
/\ 2N

s12 s13

/\ /\ VAGRVAN

5/\5 6/\4 2/\8 7/\3 1./\9 2./\.8 2./\.8 7/\3

s4 sHh sb6 s7T s8 s9 s10 s11 s14 s15 s16 s17 s18 s19 s20 s21

Planning under Uncertainty

* Utility (i.e., reward or cost) function associates a real-valued utility with
each state or state-action pair.

* With utilities, we can compute and optimize expected utilities for
planning under uncertainty.

* The expected utility of decision d in the state s can be defined as:

EU(d)=) Pr;(s)U(s)

ses

* The principle of maximum expected utility states that the optimal
decision under uncertainty is the one that has greatest expected utility.

10

Planning via Reinforcement Learning

 Two fundamental problems in sequential decision making:
" Planning:
o A model of the environment is known.

o Robots perform planning and decision making using this environment
model.

o Robots do not need interactions with the environment for planning.
= Reinforcement Learning:

o The environment is initially unknown.

o The robot interacts with the environment.

o The robot improves its behaviors through the interaction.

11

Reinforcement Learning

* Definition: an area of machine learning inspired by behaviorist
psychology, concerned with how agents seek to take actions in an
environment so as to maximize a cumulative reward.

tion :

Action a, Environment
), G

Reward r; O\ ?

State sy, 1 ’

Reinforcement Learning Setup

12

Reinforcement Learning

* Reinforcement learning is based on the reward hypothesis.

* Reward Hypothesis: All goals can be described by the maximization of
expected cumulative reward.
= Areward R, is a scalar feedback signal.
" Indicates how well agent is doing at step t.

" The agent's job is to maximize cumulative reward.
* Actions may have long term consequences; thus reward may be

delayed.
" |t may be better to sacrifice immediate reward to gain more long-term

reward.

13

Reinforcement Learning

* Differences from other machine learning
paradigms? ooty Unsupervied
" There is no supervisor, only a reward signal. Machine
" Feedback is delayed, not instantaneous.
* Time really matters (sequential, non i.i.d data). oo,

= Agent's actions affect the subsequent data it receives. Learning

* In robotics, learning from demonstration and reinforcement learning
are expected to work together:

* Learning from demonstration provides an initial solution.
* Reinforcement learning further adapt and improve the initial solution.

14

https://www.youtube.com/watch?v=M-QUkgk3HyE

https://www.youtube.com/watch?v=M-QUkgk3HyE

Agent (Robot) and Environment

* At each step t, the agent: i JRSTTIPOY
= Receives observation O, R A
= Receives scalar reward R;
= Executes action A;

O,

* The environment:
= Receives action A;
= Generates observation O, ¢
" Generates scalar reward R, 1

* t increments at environment step

16

Slides modified from Dr. David Silver

History and State

* The history is a sequence of observations, rewards and actions:
Ht — 01, Rl'Ali . 0t—1' Rt—l'At—l' Ot, Rt

" |t is also called the sensorimotor stream of an agent.
= All observable variables (observations and rewards) are up to time t.

* What happens next depends on the history:
o The agent selects actions.
o The environment selects observations and rewards.

 State is the information used to determine the next action, which is
formally defined as a function of the history:

St = f(H¢)

17

Environment State

* The environment state S7 is the
environment’s private
representation.

* It is used by the environment to
pick the next observation and
reward.

* The environment state S7 is not
usually visible to the agent.

* Even if Sf is visible, it may contain
irrelevant information.

environment state Sf

18

Agent State

* The agent state S¢ is the agent’s
internal representation.

* It can be used by the agent to
pick the next action.

* It can be computed based on
the history:

St = f(Hp)

agent state S}

19

Information State

* An information state (a.k.a., Markov state) contains all useful and
relevant information from the history.

A state S; is Markov if and only if

P[St+1 | St] — P[St+1 ‘ Sl. St]

" “The future is independent of the past given the present.”
Hl:t —7 St — Ht+1:r:>c

®» The state is a sufficient statistic of the future.

20

Fully Observable Environment

4 b
AR (R action

* Full observability: agent directly o »:-'f’;;a
observe state: val
O = S,
* Information state = observation.
* Each state must be unique.

* In this case, agent-environment
interaction can be formally
modeled with a Markov Decision
Process (MDP).

21

Markov Property

* Markov Property: The future is independent of the past given the
present.

A state S; is Markov if and only if

B[S s s anis

® The current state captures all relevant information from the history.
= Once the current state is known, the history can be thrown away.

22

State Transition

* For a Markov state s and successor state s’, the state transition

probability is defined by:

7:)ss" =P [St%l =5 | St — 5]

e State transition matrix P defines transition probabilities from all state

to all successor state, where each row sums to 1.

P

— from

P11

_Pn 1

to

Pl n

Pnn_

23

Markov Process

* A Markov process is a memoryless random process, i.e., a sequence
of states 54, 55, --- §; with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)
m S is a (finite) set of states

m P is a state transition probability matrix,
,Pss' —]P)[St-l—l — S’ | St — S]

24

Markov Process: Example

C1 2 3 Pass Pub FE Sleep

C1 i 0.5 0.5 7
c2 0.8 0.2
C3 0.6 0.4

P = Pass 1.0
Pub 0.2 0.4 0.4
FE 0.1 0.9
Sleep | 1

1.0

* Episodes sampled from the Markov
@ Process starting from C1 to Sleep:
= C1C2C3 Pass Sleep
= C1FBFBC1C2Sleep
= C1C2C3Pub C2C3PassSleep

" CIFBFBC1C2C3PubCl1FBFBFBC1C2
C3 Pub C2 Sleep

25

Markov Reward Process

* A Markov reward process is a Markov chain of states with a reward
value associated with each state.

A Markov Reward Process is a tuple (S, P, R.~)
m S is a finite set of states

m P is a state transition probability matrix,
Pssl —]P) [St+]_ — Sl | St — 5]
m R is a reward function, Rs = E[Ry1 | S¢ = s]

m 7 is a discount factor, v € [0, 1]

26

Markov Reward Process: Example

27

Markov Decision Process

* A Markov decision process (MDP) is a Markov reward process with
actions that transit the agent among states.

A Markov Decision Process is a tuple (S, A,P,R,~)
m S is a finite set of states
m A is a finite set of actions
m P is a state transition probability matrix,
P, =P[Str1 =5 | St =s,Ar =]
m R is a reward function, R = E[Ri+1 | St = s, Ar = 3]

m 7 is a discount factor v € [0, 1].

28

Markov Decision Process: Example

* |n this example, actions
are deterministic.

29

Markov Decision Process: Drag Racing Example

e MDP can also model stochastic actions:

Overheated

Image modified from http://ai.berkeley.edu

30

MDP and Reinforcement Learning

* A Markov decision process (MDP) formally describes an agent-
environment interaction for reinforcement learning (RL):

= MDPs assume that the environment is fully observable.
o The current state completely characterizes the process.

» Most RL problems can be formulated under MDPs, for example:

o Adaptive control primarily deals with continuous MDPs.
o Partially observable problems can be converted into MDPs.

* An RL approach may include several components:
" Policy: a function that determines agent actions.
= Value function: how good each state is.
" Model: agent’s representation of the environment.

31

RL Components

* Policy

A policy 7 is a distribution over actions given states,

mals)=P|A:= a | .5; = s]

= A policy fully defines the action of an agent in each state.
= MDP policies depend on the current state only (not on the history).
" Policies are stationary (time-independent): A; ~ 7(-|5:).Vt > 0

= Policies can be deterministic (and greedy): a = 7 (s)
or stochastic: m(a|s) = P[A; = a|S; = 5]

32

RL Components

* Value Function
" Value function is a prediction of the overall future reward.
" |t is used to evaluate the goodness or badness of each state.
" |t is then used to select the action given each state.
Vr(s) = Eq [Rt—i—l s 72Rt+3 Fuss] Bp = 5]

* Model

" A model represents the environment and predicts what it will do next.

o The state transition matrix P predicts the next state:
7);5/ — P[St+1 — S’ | SI‘ — Az_- — 8]
o The reward function R predicts the next immediate reward:

R;):E[Rt+1 ‘ StZS.AtZB]

33

RL Components: Example

Start

Goal

m Rewards: -1 per time-step
m Actions: N, E, S, W

m States: Agent's location

34

RL Components: Example

Policy Value Function
EEEEIEIE
a4 B B
K2 B
Bl B

-y
M I
-
ks I

Start Start

-3

m Arrows represent policy 7(s) for each state s m Numbers represent value vy (s) of each state s
35

RL Components: Example

* The model uses the grid map
to represent the state Start
transition P?

- -
SS’ .

-1
* Numbers encode immediate - .

reward RZ from each state
(same for all actions)

1

* The model may be imperfect. - Goal

36

Model-Based and Model-Free RL

Model- based RL Model-free RL

* Model-based RL s

= Learn a model from experience.

= Compute a value function (and/or
policy) from model.

¢ MOdel—free RL value/policy value/policy
u NO mOdeI. acting acting
. planning planning direct
" Learn a value function (and/or AL
pOIICV) from experience. model experience model experlence
\\model/ model
learning learning

3/

Q-Learning

* We're going to learn a model-free RL (although knowing a model also
works).

* We will focus on finding a way to directly estimate a quality function

that is associated with both states and actions.

* This function is not necessary to directly associate with the world and
represent the world.

* This quality function is called the Q-function.
= A recursive way to approximate the goodness/badness of a state-action pair.
= Q-function is like value functions, but it considers both states and actions.

* The process of estimating the Q-function is called Q-learning.
" Q-learning integrates learning and planning.

38

Q-Learning

* Given a sequence of states, actions, and rewards defined by an MDP:
Soﬂor'c, 5101P1 Szazr'z S3Cl3|"3... Skakr’k...

we define a unit experience as < s, a, ry Sy.;>.

* At each step s, choose action a that maximizes the Q-function Q(s, a).
" Qis the estimated quality function.
" |t tells us how good an action is for a state.

" Q(s, a) = immediate reward for taking an action + discounted best Q-value
from the resulting future states.

39

Q-Learning: Mathematical Formulation

e Q-function has a recursive formulation:

* Q-learning estimates the table of Q-values, called Q-table, which
updates Q-values related to the state-action pairs that are visited.

40

Q-Learning: Algorithm

* The Q-Learning algorithm is recursive, using the unit experience:
¢Sy A Pk Sk ?

41

Open Discussion

* How to define States
and Actions so that we
can use Q-learning to
enable autonomous
navigation (e.g.,
obstacle avoidance and
wall following) for a
mobile robot equipping
a 2D LiDAR?

Walls and obstacles

2D LIDAR

e

Mobile robot

Map,generated by thei2D LIDAR

42

https://www.mdpi.com/1424-8220/23/5/2534

Open Discussion

Reference:

Moreno, D.L., Regueiro,
C.V,, Iglesias, R. and Barro,
S., 2004. Using prior
knowledge to improve
reinforcement learning in
mobile robotics. Proc.
Towards Autonomous
Robotics Systems. Univ. of
Essex, UK.

Front Distance (F)

Ultrasound .
Distribution Right-Front
P U Distance(RF)
/ \ /’\ '\\
L/\a [lu‘ ‘l' RF:}E_‘:
4 L TR)12
l,.—' P ’V T — -
s

Left Distance (L) Right Distance (R)

b)

43

Q-Learning: Example

al4d a4l
s4

Y =.5, r = 100 if moving into state s6, 0 otherwise

44

Q-Learning: Example

Initial State

45

Q-Learning: Example
The Algorithm

Available actions: al2, al4
Chose al2

sl

azi
als L
ald adl __ais a3’ 555

s4 5 End: s6

as4

46

Q-Learning: Example
Update Q(s1, a12)

Available actions: a21, a25, a23

Update Q(s1, al2):
Q(sl, al2)=r+ .5 * max(Q(s2,a2l),
Q(s2,a25), Q(s2,a23))

25
ald adl _ais

s4

as4

47

Q-Learning: Example

Next Move

Available actions: a21, a25, a23
Chose a23

als ot
al4 a4l 315 452 558

s4 s5 End: s6

a54

48

Q-Learning: Example
Update Q(s2, a23)

Update Q(s2, a23):
Q(s2, a23) =1+ .5 * max(Q(s3,a32),

Q(s3,a36))
=0

A
ald4 adl a4s 2

s4

and

49

Q-Learning: Example

Next Move

Available actions: a32, a36
Chose a36

als

ald adl _a1s - a2 ash

s4 S5

as4

End: s6

50

Q-Learning: Example
Update Q(s3,a36)

FINAL STATE!

Update Q(s3, a36):
Q(s3,a36)=r =100

ald a4l _ails

s4

a>4

y
v I,

S5

as56

End: s6

51

Q-Learning: Example
New Episode The Algorithm

Available actions: al2, al4
Chose al2

all

sl s2

azi

als L
ald adl __ais a3’ 555

s4 5 End: s6

as4

Episode: agent-environment interactions from initial to final states.

52

Q-Learning: Example
Update Q(s1, a12)

Available actions: a21, a25, a23

Update Q(s1, al2):
Q(sl,al2) =r+ .5 * max(Q(s2,a21),
Q(s2,a25), Q(s2,a23))

25
ald a4l ats

s4

aS4

53

Q-Learning: Example
Update Q(s2, a23)

Available actions: a32, a3

Update Q(s2, a23):
Q(s2, a23) =1+ .5 * max(Q(s3,a32),

Q(s3,a36))
=0+.5*100=>50

25
ald a4l it

s4

a54

54

Q-Learning: Example
Final State (after many iterations)

s 223
sl s2 s3
a2l a3l
al6
al
214 a4l 215 a2 258

s4 s5 End: s6

ad4

55

Q-Learning: Algorithm

* Two problems:

iting

56

Action Selection by &-greedy Policies

* The e-greedy policy is widely used to choose an action given a state:

g-greedy policy:

1. Generate a random number r € [0,1]

2. If r > &, choose an action derived from the Q values
(which yields the maximum reward)

3. Else, choose a random action

* The value of € determines the exploration-exploitation of the agent.
= Alarger € results in more exploration and less exploitation.

= As arule of thumb, € is usually chosen to be close to 1 and decreased over time.

57

Temporal Difference Update

* Temporal Difference (TD) algorithms enable the agent to
incrementally update its Q-table through every single action it takes.

NewEstimate <~ OldEstimate 4+ StepSize [Target — OldEstimate}

" The value Target-OldEstimate is called the target error.

= StepSize is called learning rate, with a value between 0 and 1; 1 means
completely overwrites the old Q value.

* With the temporal difference update, Q-learning becomes:

{E(E;f, ;4]5} — {E(Sf, ;415} + Hf_— L1+ i 111:?}{ {E(Sf L] - 1‘1) — {E(Sf, ;4]5}-‘ .

58

Temporal Difference Update

* Q-Learning is an off-policy learning algorithm, because:

= |t directly finds the optimal Q-value without any dependency on the policy
being followed (due to the maximization operation).

Q-learning (off-policy TD control) for estimating 7 ~ m,

Initialize (Q(s,a), for all s € §, a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from () (e.g., e-greedy)
Take action A, observe R, S
Q(S,A) + Q(S,A) + a|R+ ymax, Q(S',a) — Q(S, A)]
S« 8
until S i1s terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8

Q-Learning: A Visual Demonstration

60

SARSA

* SARSA is acronym for State-Action-Reward-State-Action.
* SARSA is an on-policy TD learning algorithm, because:

= |t evaluates and improves the same policy that is being used to select actions.

Q(Sp, Ar) = Q(Se, Ay) + « [Rﬂ—H +YQ (St 15 Ar41) — Q(St, Aa)}-

Sarsa (on-policy TD control) for estimating Q) ~ q.

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A" from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A) «+— Q(S,A) + cu[R +1Q(S", A") — Q(StA)]
S« S A« A

until S is terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7

61

Q-learning (off-policy TD control) for estimating = ~ ,

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q({erminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from () (e.g., e-greedy)
Take action A, observe R, S
Q(S, A}) — Q(S,A) + CE[R‘|' ymax, Q(S’,a) — Q(S, A)]
S5« 5

until S 1s terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8

Sarsa (on-policy TD control) for estimating Q) ~ q.

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A" from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A) + Q(S,A) + a[R+vQ(S",A") — Q(S, A)]
S« 8 A A

until S is terminal Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7

62

Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

Italian Institute of Technology

https://www.youtube.com/watch?v=bxtPyJqVrmk

Difficulties of RL on Real Robots

* When the number of states and actions becomes larger, the Q-table
becomes intractable, and Q-learning easily suffers from the curse of
dimensionality:

= The amount of memory required to save and update the Q-table would
increase as the number of states and actions increases.

The amount of time required to explore each state to create the required
Q-table would be unrealistic.

* Design of states, actions, and rewards is not trivial in real-world
robotics applications:

= States/actions are typically continuous variables in robotics applications.
* Reward definition often requires significant expert or domain knowledge.

64

Difficulties of RL on Real Robots

* RL algorithms are
notoriously difficult to
train for real robots.

= Sample efficiency and
operation safety.

= Convergence and
reliability due to huge
exploration space.

= Sim-to-real gaps.
= Generalizability to

changes in the

environment and robot - | ~
co nﬁgu rations. https://www.youtube.com/watch?v=iaF43Zeloel

65

https://www.youtube.com/watch?v=iaF43Ze1oeI

	Slide 1: COMPSCI-603: Robotics
	Slide 2: Robot Decision Making and Planning
	Slide 3: Robot Decision Making and Planning
	Slide 4: Common Scenarios of Planning
	Slide 5: Example: Vacuum World
	Slide 6: Example: Vacuum World (observable, deterministic actions)
	Slide 7: Example: Vacuum World (non-observable, deterministic actions)
	Slide 8: Planning under Uncertainty
	Slide 9: Planning under Uncertainty
	Slide 10: Planning under Uncertainty
	Slide 11: Planning via Reinforcement Learning
	Slide 12: Reinforcement Learning
	Slide 13: Reinforcement Learning
	Slide 14: Reinforcement Learning
	Slide 15
	Slide 16: Agent (Robot) and Environment
	Slide 17: History and State
	Slide 18: Environment State
	Slide 19: Agent State
	Slide 20: Information State
	Slide 21: Fully Observable Environment
	Slide 22: Markov Property
	Slide 23: State Transition
	Slide 24: Markov Process
	Slide 25: Markov Process: Example
	Slide 26: Markov Reward Process
	Slide 27: Markov Reward Process: Example
	Slide 28: Markov Decision Process
	Slide 29: Markov Decision Process: Example
	Slide 30: Markov Decision Process: Drag Racing Example
	Slide 31: MDP and Reinforcement Learning
	Slide 32: RL Components
	Slide 33: RL Components
	Slide 34: RL Components: Example
	Slide 35: RL Components: Example
	Slide 36: RL Components: Example
	Slide 37: Model-Based and Model-Free RL
	Slide 38: Q-Learning
	Slide 39: Q-Learning
	Slide 40: Q-Learning: Mathematical Formulation
	Slide 41: Q-Learning: Algorithm
	Slide 42: Open Discussion
	Slide 43: Open Discussion
	Slide 44: Q-Learning: Example
	Slide 45: Q-Learning: Example
	Slide 46: Q-Learning: Example
	Slide 47: Q-Learning: Example
	Slide 48: Q-Learning: Example
	Slide 49: Q-Learning: Example
	Slide 50: Q-Learning: Example
	Slide 51: Q-Learning: Example
	Slide 52: Q-Learning: Example
	Slide 53: Q-Learning: Example
	Slide 54: Q-Learning: Example
	Slide 55: Q-Learning: Example
	Slide 56: Q-Learning: Algorithm
	Slide 57: Action Selection by bold italic script epsilon-greedy Policies
	Slide 58: Temporal Difference Update
	Slide 59: Temporal Difference Update
	Slide 60: Q-Learning: A Visual Demonstration
	Slide 61: SARSA
	Slide 62
	Slide 63
	Slide 64: Difficulties of RL on Real Robots
	Slide 65: Difficulties of RL on Real Robots

