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Robot Decision Making and Planning
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Robot Decision Making and Planning

• Robots need to make various decisions and 
construct different plans, for example:
▪ Decision making.

▪ Planning: task planning, motion planning 
(e.g., for robotic arms), and path planning 
(e.g., for mobile robotics).
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• Decision making and planning characteristics:
▪ Reactive (one-time) decision making versus sequential planning.

▪ Certain versus uncertain scenarios.

▪ Observable versus partially observable space.



Common Scenarios of Planning

• Deterministic, fully observable:
▪ Agent knows exactly which state it is in.

▪ Agent action is executed as expected.

• Stochastic, partially observable:
▪ Observations provide new information 

about current state with uncertainty.

▪ Robot actions may not be successfully 
executed.

• Non-observable:
▪ Agent may have no idea where it is.
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Example: Vacuum World

• Observable: 
▪ Start in #5
▪ Actions: [Right; Suck]

• Non-observable: 
▪ Start in {1;2;3;4;5;6;7;8}
▪ E.g., action Right goes to {2;4;6;8}
▪ Actions: [Right; Suck; Left; Suck]

• Partially observable: 
▪ Start in #5, local sensing only
▪ Stochastic actions, suck can make a clean 

carpet dirty
▪ Actions: [Right; if dirt then Suck]
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Possible actions: left, right, suck



Example: Vacuum World (observable, deterministic actions)

• States: cross product of 
robot locations and 
dirtiness

• Actions: Left, Right, Suck, 
NoOp

• Successor function:  
Left/Right changes 
location, Suck changes 
dirtiness

• Goal: no dirt

• Cost: 1 per action (0 for 
NoOp), also called penalty, 
utility, or reward
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Example: Vacuum World (non-observable, deterministic actions)

• Definition of states is 
different in the case of 
non-observable 
vacuum world.

• If actions are 
stochastic, action 
successor function is 
also defined 
differently.
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Planning under Uncertainty

• In unstructured environments, robot decision making and planning 
must be performed under uncertainty.
▪ Uncertainty in action outcomes, i.e., stochastic action

▪ Uncertainty in state of knowledge

▪ Any combination of the two
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Planning under Uncertainty

• Decision tree provides a classic solution to decision making under 
uncertainty:
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Planning under Uncertainty

• Utility (i.e., reward or cost) function associates a real-valued utility with 
each state or state-action pair.

• With utilities, we can compute and optimize expected utilities for 
planning under uncertainty.

• The expected utility of decision 𝑑 in the state 𝑠 can be defined as: 

• The principle of maximum expected utility states that the optimal 
decision under uncertainty is the one that has greatest expected utility.
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Planning via Reinforcement Learning

• Two fundamental problems in sequential decision making:

▪ Planning:
oA model of the environment is known.

oRobots perform planning and decision making using this environment 
model.

oRobots do not need interactions with the environment for planning.

▪ Reinforcement Learning:
o The environment is initially unknown.

o The robot interacts with the environment.

o The robot improves its behaviors through the interaction.
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Reinforcement Learning

• Definition: an area of machine learning inspired by behaviorist 
psychology, concerned with how agents seek to take actions in an 
environment so as to maximize a cumulative reward. 
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Reinforcement Learning

• Reinforcement learning is based on the reward hypothesis.

• Reward Hypothesis: All goals can be described by the maximization of 
expected cumulative reward.
▪ A reward 𝑅𝑡 is a scalar feedback signal.

▪ Indicates how well agent is doing at step 𝑡.

▪ The agent's job is to maximize cumulative reward.

• Actions may have long term consequences; thus reward may be 
delayed.
▪ It may be better to sacrifice immediate reward to gain more long-term 

reward.
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Reinforcement Learning
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• In robotics, learning from demonstration and reinforcement learning 
are expected to work together: 
• Learning from demonstration provides an initial solution.

• Reinforcement learning further adapt and improve the initial solution.

• Differences from other machine learning 
paradigms?
▪ There is no supervisor, only a reward signal.

▪ Feedback is delayed, not instantaneous.

▪ Time really matters (sequential, non i.i.d data).

▪ Agent's actions affect the subsequent data it receives.
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https://www.youtube.com/watch?v=M-QUkgk3HyE

https://www.youtube.com/watch?v=M-QUkgk3HyE


Agent (Robot) and Environment

• At each step 𝑡, the agent:
▪ Receives observation 𝑂𝑡
▪ Receives scalar reward 𝑅𝑡
▪ Executes action 𝐴𝑡

• The environment:
▪ Receives action 𝐴𝑡
▪ Generates observation 𝑂𝑡+1
▪ Generates scalar reward 𝑅𝑡+1

• 𝑡 increments at environment step
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Slides modified from Dr. David Silver



History and State

• The history is a sequence of observations, rewards and actions:

▪ It is also called the sensorimotor stream of an agent.

▪ All observable variables (observations and rewards) are up to time 𝑡.

▪ What happens next depends on the history:
o The agent selects actions.

o The environment selects observations and rewards.

• State is the information used to determine the next action, which is 
formally defined as a function of the history:
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𝐻𝑡 = 𝑂1, 𝑅1, 𝐴1, … , 𝑂𝑡−1, 𝑅𝑡−1, 𝐴𝑡−1, 𝑂𝑡, 𝑅𝑡

𝑆𝑡 = 𝑓(𝐻𝑡)



Environment State

• The environment state 𝑆𝑡
𝑒 is the 

environment’s private 
representation.

• It is used by the environment to 
pick the next observation and 
reward.

• The environment state 𝑆𝑡
𝑒 is not 

usually visible to the agent.

• Even if 𝑆𝑡
𝑒 is visible, it may contain 

irrelevant information.
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Agent State

• The agent state 𝑆𝑡
𝑎 is the agent’s 

internal representation.

• It can be used by the agent to 
pick the next action.

• It can be computed based on 
the history:
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𝑆𝑡
𝑎 = 𝑓(𝐻𝑡)



Information State

• An information state (a.k.a., Markov state) contains all useful and 
relevant information from the history.

▪ “The future is independent of the past given the present.”

▪ The state is a sufficient statistic of the future.

20



Fully Observable Environment

• Full observability: agent directly 
observe state:

• Information state = observation.

• Each state must be unique.

• In this case, agent-environment 
interaction can be formally 
modeled with a Markov Decision 
Process (MDP).
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Markov Property

• Markov Property: The future is independent of the past given the 
present.

▪ The current state captures all relevant information from the history.

▪ Once the current state is known, the history can be thrown away.
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State Transition

• For a Markov state 𝑠 and successor state 𝑠’, the state transition 
probability is defined by: 

• State transition matrix     defines transition probabilities from all state 
to all successor state, where each row sums to 1.

23



Markov Process

• A Markov process is a memoryless random process, i.e., a sequence 
of states 𝑆1, 𝑆2, ⋯ 𝑆𝑡 with the Markov property.
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Markov Process: Example
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• Episodes sampled from the Markov 
Process starting from C1 to Sleep:
▪ C1 C2 C3 Pass Sleep

▪ C1 FB FB C1 C2 Sleep

▪ C1 C2 C3 Pub C2 C3 Pass Sleep

▪ C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 
C3 Pub C2 Sleep



Markov Reward Process

• A Markov reward process is a Markov chain of states with a reward 
value associated with each state.
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Markov Reward Process: Example

27



Markov Decision Process

• A Markov decision process (MDP) is a Markov reward process with 
actions that transit the agent among states. 
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Markov Decision Process: Example
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• In this example, actions 
are deterministic.



Markov Decision Process: Drag Racing Example
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Image modified from http://ai.berkeley.edu

• MDP can also model stochastic actions:



MDP and Reinforcement Learning

• A Markov decision process (MDP) formally describes an agent-
environment interaction for reinforcement learning (RL):
▪ MDPs assume that the environment is fully observable.

o The current state completely characterizes the process.

▪ Most RL problems can be formulated under MDPs, for example:
o Adaptive control primarily deals with continuous MDPs.

o Partially observable problems can be converted into MDPs.

• An RL approach may include several components:
▪ Policy: a function that determines agent actions.

▪ Value function: how good each state is.

▪ Model: agent’s representation of the environment.
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RL Components

• Policy

▪ A policy fully defines the action of an agent in each state.

▪ MDP policies depend on the current state only (not on the history).

▪ Policies are stationary (time-independent):

▪ Policies can be deterministic (and greedy):
or stochastic: 
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RL Components

• Value Function
▪ Value function is a prediction of the overall future reward.

▪ It is used to evaluate the goodness or badness of each state.

▪ It is then used to select the action given each state.

• Model
▪ A model represents the environment and predicts what it will do next.

o The state transition matrix      predicts the next state:

o The reward function      predicts the next immediate reward: 
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RL Components: Example
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RL Components: Example
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Policy Value Function



RL Components: Example

• The model uses the grid map 
to represent the state 
transition        .

• Numbers encode immediate 
reward        from each state 
(same for all actions)

• The model may be imperfect.     
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Model-Based and Model-Free RL

• Model-based RL
▪ Learn a model from experience.

▪ Compute a value function (and/or 
policy) from model.
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Model-based RL Model-free RL

• Model-free RL
▪ No model.

▪ Learn a value function (and/or 
policy) from experience.



Q-Learning

• We’re going to learn a model-free RL (although knowing a model also 
works). 

• We will focus on finding a way to directly estimate a quality function 
that is associated with both states and actions.
▪ This function is not necessary to directly associate with the world and 

represent the world.

• This quality function is called the Q-function.
▪ A recursive way to approximate the goodness/badness of a state-action pair.
▪ Q-function is like value functions, but it considers both states and actions.

• The process of estimating the Q-function is called Q-learning.
▪ Q-learning integrates learning and planning.
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Q-Learning

• Given a sequence of states, actions, and rewards defined by an MDP:

we define a unit experience as                         .

• At each step s, choose action a that maximizes the Q-function Q(s, a).
▪ Q is the estimated quality function. 

▪ It tells us how good an action is for a state. 

▪ Q(s, a) = immediate reward for taking an action + discounted best Q-value 
from the resulting future states.
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Q-Learning: Mathematical Formulation

• Q-function has a recursive formulation:

• Q-learning estimates the table of Q-values, called Q-table, which 
updates Q-values related to the state-action pairs that are visited.
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Q-Learning: Algorithm

• The Q-Learning algorithm is recursive, using the unit experience:
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Open Discussion

• How to define States
and Actions so that we 
can use Q-learning to 
enable autonomous 
navigation (e.g., 
obstacle avoidance and 
wall following) for a 
mobile robot equipping 
a 2D LiDAR?
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Image credit: link

https://www.mdpi.com/1424-8220/23/5/2534


Open Discussion

Reference: 

Moreno, D.L., Regueiro, 
C.V., Iglesias, R. and Barro, 
S., 2004. Using prior 
knowledge to improve 
reinforcement learning in 
mobile robotics. Proc. 
Towards Autonomous 
Robotics Systems. Univ. of 
Essex, UK.
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example
New Episode

Episode: agent-environment interactions from initial to final states.
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Q-Learning: Example
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Q-Learning: Example
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Q-Learning: Example



Q-Learning: Algorithm

• Two problems:
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(Greedy action selection)

(Complete overwriting 
old Q values)



Action Selection by 𝜺-greedy Policies 

• The 𝜀-greedy policy is widely used to choose an action given a state:

• The value of 𝜀 determines the exploration-exploitation of the agent.
▪ A larger 𝜀 results in more exploration and less exploitation.
▪ As a rule of thumb, 𝜀 is usually chosen to be close to 1 and decreased over time.
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𝜺-greedy policy:
 

1. Generate a random number 𝑟 ∈ [0,1]
2. If 𝑟 > 𝜀, choose an action derived from the Q values 

(which yields the maximum reward)

3. Else, choose a random action



Temporal Difference Update

• Temporal Difference (TD) algorithms enable the agent to 
incrementally update its Q-table through every single action it takes. 

▪ The value Target-OldEstimate is called the target error.

▪ StepSize is called learning rate, with a value between 0 and 1; 1 means 
completely overwrites the old Q value.

• With the temporal difference update, Q-learning becomes:
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Temporal Difference Update

• Q-Learning is an off-policy learning algorithm, because:
▪ It directly finds the optimal Q-value without any dependency on the policy 

being followed (due to the maximization operation).
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Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8
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Q-Learning: A Visual Demonstration



SARSA

• SARSA is acronym for State-Action-Reward-State-Action.

• SARSA is an on-policy TD learning algorithm, because:
▪ It evaluates and improves the same policy that is being used to select actions.
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Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7
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Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.7

Ref: Introduction to Reinforcement learning by Sutton and Barto - Chapter 6.8
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https://www.youtube.com/watch?v=bxtPyJqVrmk

https://www.youtube.com/watch?v=bxtPyJqVrmk


Difficulties of RL on Real Robots

• When the number of states and actions becomes larger, the Q-table 
becomes intractable, and Q-learning easily suffers from the curse of 
dimensionality:
▪ The amount of memory required to save and update the Q-table would 

increase as the number of states and actions increases.

▪ The amount of time required to explore each state to create the required 
Q-table would be unrealistic.

• Design of states, actions, and rewards is not trivial in real-world 
robotics applications:
▪ States/actions are typically continuous variables in robotics applications.

▪ Reward definition often requires significant expert or domain knowledge.
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Difficulties of RL on Real Robots

• RL algorithms are 
notoriously difficult to 
train for real robots.
▪ Sample efficiency and 

operation safety.

▪ Convergence and 
reliability due to huge 
exploration space.

▪ Sim-to-real gaps.

▪ Generalizability to 
changes in the 
environment and robot 
configurations. 
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https://www.youtube.com/watch?v=iaF43Ze1oeI

https://www.youtube.com/watch?v=iaF43Ze1oeI
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