COMPSCI-603: Robotics

Bayes Filters

Partial slide courtesy by C. Stachniss, J. Biswas, and L. Parker
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Localization and Navigation

* How to navigate between A and B?
= Possible by always following the left wall,
= But how to detect that the goal is reached?

* Localization is typically a necessary component for robot

navigation:

= A robot must identify ﬁ
whether it reaches the E T
goal position.

= A robot often needs to
know its location for ==
path planning.
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Types of Robot Localization

* “Position tracking” — figure out where the robot is, given that we
know where the robot started.

* “Global” localization — figure out where the robot is, but we don’t
know where the robot started.

* “Kidnapped robot” — robot is moved by external agent to any
arbitrary location.

" |t is more difficult than the global localization problems, in that the robot
might believe it knows where it is while it does not.



Challenges of Robot Localization

* Absolute position (e.g., GPS) may be
unavailable, unreliable, and in many
situations, insufficient.

* Sensors are always noisy and may
provide irrelevant information, which
may be caused by

= Environment properties, e.g., mirror
reflection or reflective floor surface.

= Environment changes, e.g., weather,
seasonal changes, earthquake, etc.

" Interference between sensors, e.g.,

ultrasonic sensors, structured-light sensors.

Morning

7‘

Afternoon

reflective surface



Challenges of Robot Localization

 Perceptual/Sensing Aliasing
" |In robots, non-uniqueness of sensors readings is the norm.

= Even assuming sensor readings are perfect, robot localization still suffers from
the challenge of perceptual aliasing:

o different places generate a similar visual (or, in general, perceptual) footprint.




Odometry and Dead Reckoning

* These methods update robot Eror Propagaton in Odometry

position and orientation based on Dg
= Odometry: wheel sensors only | ‘ ‘ &

* Dead reckoning: also heading sensors : _ : VA
(e.g.’ gyr_oscope Or CompaSS) Enf}_l___._____l__l "_.______

+ Pros: Straight forward, easy. %f
* Cons Errors are unbounded. I N S %
= Limited sensing resolution. I I SO SRR Ot S S S
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= Misalignment of motors (e.g., wheels). — @
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= Unequal floor contact (e.g., slipping). xm!



Place Recognition

* Place recognition aims to identify a place using a map, or templates of
places that were previously visited by the robot.

* Landmark-based place recognition is commonly used by humans for
localization.

* Pros: Intuitive

* Cons: Easily to suffer
from perceptual
aliasing and
environment
changes.

Pre-disaster




Types of Robot Localization

* “Position tracking” — figure out where the robot is, given that we
know where the robot started.

* “Global” localization — figure out where the robot is, but we don’t
know where the robot started.

* “Kidnapped robot” — robot is moved by external agent to any
arbitrary location.



Probability Rules and Bayes Theorem
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Refresher on Probability Rules and Bayes Theorem

e Discrete Probabilities:

P(X,Y) = P(X[Y)P(Y)

(Y
= P(Y|X)P(X)
P(X|Y)=P(X) iff. X and Y are independent (Y provides no more information about X)
P(X,)Y)=P(X)P(Y) iff. X and Y are independent
pixly) = PYOP)

P(Y)

I |

P(X,Y)

2
Z (X|Y)P
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Refresher on Probability Rules and Bayes Theorem

* If x takes on continuous values, p(x) is not a probability, it is the
probability density.

* Asking "what is the probability of x = <some specific value>" has no

meaning (the most appropriate answer is 0).

" E.g., if we assume that the tip of a dart is a point, the probability for the dart
to land at a specific point on a broad is O.

* An appropriate question is "what is the probability of x in <some
continuous range>":

P(z € |a,b]) :/ p(x)dx
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Refresher on Probability Rules and Bayes Theorem

e Conditions:
p(z|y)

= Often colloquially read as "probability of x given y“ e.g., probability that the
robot is at position x given the sensor input y.

= But this is not quite right!
" |t also does not mean we know the "value" of y as p(y) is still a distribution!

= Better way to think about it: If we know nothing about p(y), then p(x) is the
best we can infer about x. However, if we do know that y has a distribution
p(y), then p(x|y) is a more informative distribution: it is the distribution of x
if y has the distribution p(y).
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Refresher on Probability Rules and Bayes Theorem

* From discrete to continuous random variables:

P(X)e[0,1]  p(x) € R*

» P(X)=1 /p
N P(XY)  plr) = / p(z, y)dy

Discrete Continuous

14



Refresher on Probability Rules and Bayes Theorem

* There are two operations we often would like to perform, for a
distribution p(x):
= Sample a random value: x~p(x)

= Evaluate the probability density at a particular value: p(x)[y=x,-. It is the limit

of the probability of the interval (x, x + A] divided by the length of the
interval as the length of the interval goes to O.

* For a conditional distribution p(x|y) when y = y,:
= Sample a random value: x~p(x|y)|y=y,
= Evaluate the probability density at a particular value: p(x|y)|x=x, y=y,-

15



Refresher on Probability Rules and Bayes Theorem

likelihood prior
* Bayes Rule N AN

p(z|y) = p(y | x) p(x)

~—— p(y)
posterior ——

evidence

p(x,y) = p(z|y)p(y)

and
p(x,y) = p(y | x)p(x)
so that

ply|z)p(z)
p(y)

plxz|y)p(y) =ply|z)p(z) < plz|y) =



Bayesian State Estimation

Chapter 2.4, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.
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The “Belief”

 Belief (in robotics) is defined as the distribution of the robot's state
estimates:

Be](gjt) — p(xt‘ul-t; 31-t) x : state (e.g., robot location)
S u : control
Bel(z1:t) = p(w1:4|ur, 1:0) s : sensing observations

e Characteristics:
= Belief is a Probability Density Function (pdf).
" |t accounts for all data observed so far from time step 1 to t.
= “Optimal” estimate is still a pdf.

18



Belief State Estimation

* In robotics, State Estimation is the field that deals with the challenge
of using on-board sensors to estimate the state, such as position and
orientation, of a robot as it moves through the world.

* Belief State Estimation uses belief to represent the distribution of

state estimates.
* Variations of the belief state estimation
are based on:
" Sensing (e.g., place recoW’
= Control (e.g., odometry)
= Availability of prior state distribution
" Prior data (e.g., map)e—
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State Estimation

* Given inputs:
= Motion model / state transition: P(2yq1|2e) OF P(X4y1 |2, Us)
= Sensor model / observation model : p(s¢|z¢, D)

* Wanted output to compute:

p(ﬂjt|ﬂj0’ U7ty S1:ts D)

* Note:
" These are functions of all the variables, not just the first
" |[n the state estimation algorithm, we will evaluate them at specific values

20



Motion Model

* Motion model is mathematically defined as:

p($t+1 |5€ta Ut+1)

* It predicts how likely for the robot to go from a previous location to
the next location based on control (or odometry).

* Variations of motion models:
" u is based entirely on motion commands sent (velocity).
" 1 is from encoder measurements (odometry).
" u is from IMU (accelerometer & gyroscope) measurements.
* No u: state estimation of an agent not under our control, e.g., a pedestrian.

21



Sensor Model

* Sensor model / observation model: p(s¢|z:, D)

* It predicts:

* What the robot expects to observe at a given x (given an optional domain-
specific prior data D, like the map), and

" Based on the sensor noise model, how likely to observe a specific value of s.

e Factors that contribute to the sensor model:
= Sensor noise model
= Sensor limitations (e.g., range, resolution)

* Environmental / domain factors (e.g., moving obstacles, surface parameters)
= Other random errors

22



Markov State Estimation

o Markov property: Past
observations/states are independent

of future observations/states given
the current observations/states. @ o @ o
= QObservations are Markov: given state x; at

time t, observation s; is independent of all

past states and observations. o @ o
= States are Markov: given state x; attime ¢

and control u;s, 4 attime t + 1, state x at

time t + 1 is independent of all other past (

states and observations.
o Markov state estimation can be mathematically formulated with a

dynamic Bayesian network.

Map )




Derivation: Recursive Belief Update

e Goal: Given the belief at t, the motion model, and the sensor model,
represent the belief at time t + 1 as a function of the belief at t.

* Recall: conditional are preserved ot P57
in Bayes rule: ey =B

plalb, c)p(blc) = p(a,blc) = p(bla, c)p(alc) p(z,y) = plz|y)p(y)




Derivation: Recursive Belief Update

likelihood prior

(y|z)p(x)

Py |x)p\T

p(z|y) =

i s p(y)

posterior S~
evidence

P(St+1 Tt+1ly L0y S1:ts ul:t+1)ﬁ(ﬂft+1 |5L‘0, S1:t, Ul:t+1)

|ﬂ30, S1:¢, Ul:t+1)

Bayes' rule to account fo
the sensor mode

—_—

25



Derivation: Recursive Belief Update

Bayes' rule to account fo

P(St+1 |33t+1, Zo, S1:t, ul:t+1)}9($t+1 |5L‘0, S1:t, Ul:t+1)

p(8t+1 |=’130, S1:¢, Ul:t+1)

:OC p(3t+1 \$t+1)P($t+1 |-”E0, S1:t; ’U»1:t+1)

1
'@P(St+1|$t+1)/ P($t+1;$t|3§0331:t;“1:t+1)d$t
Tt

:_OC P(St+1 |$t+1, L0, S1:t, Ul:t+1)P($t+1 |1170, S1:ts Ul:t—l—l)

Markov-assuraption

-

the sensor model

Introducing term from previous !
time-step using marginalization !

Lo, S1:ts ul:t-|—1)

L0y S1:ts Ul:t+1)d$‘t
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Derivation: Recursive Belief Update

Bayes' rule to account fo
P(St41|Te41, To,s S1:¢, UL:64+1)P(Te41|T0, S1:65 UL:t41) the sensor model

p(8t+1 |=’130, S1:¢, Ul:t+1)

X P(St+1 |$t+1, L0, S1:t, Ul:t+1)P($t+1 |1170, S1:ts Ul:t—l—l)

-

| .

e il b il e e L L e e P e R e e Markoev assurnption

1 OC P(St4+1|T41)P(Te41]T0, S1:4, Ut:041) |

| 1

1 1 1 |

X P(St+1|1’t+1)/ P(Tt41,Te|To, S1:4, Ut:t41)dTy Intmducmg t.erm fro”.‘ piiGVl(_)US l
. time-step using marginalization !

OCP(3t+1\$t+1)/ p(ﬂ3t+1|$t=$0,31:t,U1:t+1)P($t|$0=Slztaul:t+1)d$t
e Muarkevassumption

|

|

|

|

|

|

|

|
|O(p(3t—|—1‘$t+1)/ p($t+1|$taut+1)$)($t|$0:Slzta’ul:t)dfﬁt
| Tt
|

|

|

|
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Recursive Belief Update

Bel(z¢y1) DCIJ(SHHI‘-HL)/ P(@ti1 |2, ueir) Bel(zy ) dy

T

* Given the previous belief, the update requires integration over all
possible states.

* Note the proportion sign: a re-normalization is required after each
recursive belief update, because belief is a distribution.

28



Bayesian Markov State Estimation

* Given belief Bel(x;),
= |f a motion model (e.g., odometry) is available, predict as

Bel(zy1) = / P(Tiy1|xe, ugqr )Bel(zy)dz;  "Predict/estimate"

= |f a2 sensor model (e.g., using LiDAR/camera data) is available, update as

Bel(z¢41) oc|p(Si41|Te41)Bel(x4) “Correct/update”

* One step can be repeatedly applied when the other is not available.

* Most real robotics applications have both.

29



Markov Localization

Chapter 7.3-7.4, Sebastian Thrun, Wolfram Burgard and Dieter
Fox. “Probabilistic Robotics.” MIT Press. 2005.
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Markov Localization

* Markov localization is a classic solution to address probabilistic, map-
based localization.

* Consider a mobile robot moving in a known environment:

" As it starts to move (e.g., from a precisely known location), it might keep track
of its location using odometry.

= However, after a certain movement the robot will get very uncertain about its
position. Then the robot will need to update its position using an observation

of the environment.

* Odometry information leads to an estimate of the robot’s position,
which can then be fused with the sensor observations to get the best

possible update of the robot’s actual position.

31



Markov Localization

* Markov localization uses an explicit, discrete representation of the
positions as states.

* This is usually done by representing the environment by a grid or a
topological graph with a finite number of possible states (positions).

Image Credit: G. Gemignani
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Markov Localization

» Key idea: compute a discrete probability distribution over all possible
states (positions) in the environment.

= Each value in this distribution
represents the probability that
the robot is in a particular location.

= Markov localization recursively
maintains the estimates of the
positions.

= During each update, the
probability for each position

Y

State space = 2D, infinite #states

of the entire space is updated. "

33



Example

Markov Localization

 The robot doesn’t know where it is. Thus, a reasonable initial believe

of its position is a uniform distribution.

. rrrrrrrr+rr—rrrr & ° & °r— " ©+— @ ° ©T *‘- ° ©° [ T [ [ @[ ©T ©T [ [T T [ T T T T"‘

C T [ [ T [ T [ [ T T
C T [ [ T [ T [ [ T T
T 1T 1T T T T T T 7

C T [ T [ T [ [ T [T [ T
C T [ T [ T [ [ T [T [ T

L T [ [ T [ 1
C T T T T T T T T 1

{ bel(x)
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Markov Localization: Example

* A sensor reading is made (depending on a sensor model) indicating a

door at certain locations (using a map).

* The sensor reading is used to update the belief (using Bayes theorem).

35
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Bel(z11) ox|p(Sig1|Tis1, M)Bel(ay)




Example

Markov Localization

* The robot is moving, which adds noise.

* The robot then can estimate its new belief (using a motion model).

NN [N [ (N [ [ [ [ N N Y

{ bel(x)

36
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Markov Localization: Example

* A sensor reading is made (using a sensor model) indicating a door at

certain locations (using a map).

* The sensor reading is used to update the belief (using Bayes theorem).
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p(s|x)

{ bel(x)
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Example

Markov Localization

* Repeat the estimation/prediction and correction/update.

N [N (N N U [ e [ N U N N

I T T T T T T T T 1T
LT [ [ T [T [ [ T [
C T T T T T 1T T T 7

L [ T [T [ T
I T T T 1T T 1

L1 [ 1
T T 1

{ bel(x)
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Motion Model

Chapter 5, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.
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Robot Motion

* Robot motion is inherently uncertain.

* How can we model this uncertainty?

41



Motion Model

* Motion model specifies a posterior probability that action u carries
the robot from x;_4 to x;.

p(ﬂft \ Ut, 331;—1)

-

Algorithm Bayes filter(bel(x;_1), us, 2¢):

for all x; do

bel(x,) = [

p(ﬂl't \ Utail'»'t—l)

bel(zy 1) dx

bel(x) = n p(ze | x¢) bel(ay)

endfor
return bel ()
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Coordinate Systems

* In 3D space, the pose of a robot can be described by six parameters:
" Three-dimensional Cartesian coordinates
* Three Euler angles pitch, roll, and yaw

* In the lecture, we consider !

robots operating on a
planar surface.

* The state space of such
coordinate system is
three-dimensional (x,y,0)




Typical Motion Models

 Two motion models are often used in practice:
* Odometry-based
= \Velocity-based

 Odometry-based models are used when systems are equipped with
wheel encoders (or IMU).

" They calculate the new pose based on encoder (or IMU) values.

* VVelocity-based models are used when no wheel encoders (or IMU
measurements) are given.

" They calculate the new pose based on the velocities and the time elapsed.

* We will focus on the odometry-based motion models.
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Wheel Encoder Examples

* Typically, these modules require +xV and GND to power them, and
provide a 0 to xV output. They provide +xV output when they see a gap,
and a OV output when they do not see a gap.

45
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Odometry-based Motion Model

* Robot moves from <i,y,§> to <3‘c'j’,8'>

How can a robot move from one pose to another pose?
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Odometry-based Motion Model

* Robot moves from <i,y,§> to <3‘c'j’,8_'>
* Odometry information u=<5 O .,.0

rotl> “rot2> “~trans

Oy =(F=X)* +(7-7)
= atan2(y'-9,x'-x)- 6

=0'-6 -0

Rotation Translation Rotation (RTR) model .



Odometry-based Motion Model

* Robot moves from (x,y,@) <_' y' §'>
* Odometry information u—(é O .,.0

rotl> “rot2> “~trans

Oy =\ (F'=X)? +(7-7)
= atan2(y'-y,x'-x) -6

csrorl
[
o0 . =60'-0-0

rot2

rotl é;}-—__;_____--
S !

atal’lz 5”*@5

g rotl
T Rotation Translation Rotation (RTR) model 25



The atan2 Function oo
* Extends the inverse tangent (or arctangent) - i .
and correctly copes with the signs of x and y. 1 °| Cse0 )

( atan(y/x) ifz >0
o sign(y) (m —atan(ly/x|)) ifz <O
atan2(y,x) = A 0 fz=1y=0
- sign(y) m/2 ifx =0,y % 0

49



Uncertainty in Motion (of Wheeled Robots)

i—F

ideal case different wheel
diameters

—

bump

and many more ...
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Noise Model for Odometry

* The measured motion is given by the true motion corrupted with noise.

1. One way to model the noise is to simply center a Gaussian noise in
the pose <3?,)7',9'> only, but this cannot model the reality well.

2. For the RTR model, the noise is introduced by any rotation and
translation motions.

 Why are these two methods different?

+ Gaussian noise

+ Gaussian noise

éff”m?S

1+ Gaussian noise

O

rot

51



Noise Model for Odometry

VoY
O .=0_.+€E

rotl rotl (24} |(Sror1|+az |(Strmm|
5 =0

— + &

lrans trans (1"3 ‘(Srmnsl+a4 |(Sror1 +(Srot2|
O . .=0..,+E

rot2 rot2 24] |5ror2|+a2 |§n'mzs|

(SIF”MS

rorl + Gaussian noise

O

+ Gaussian noise

+ Gaussian noise

52



Recall: Gaussian Distribution to Model Noise

(Gaussian or
"normal"
distribution
fg(x) | 1 _%x_
: € > (x)= e’
| 2m0°
I
I l . 0214
00135 ' 3413 | .3413 |.1359 | 00135
S | | | | | ] |-
-36 -20 -0 0 4] 20 30
X

What is the label of the y-axis?
53



Calculating the Probability Density (Zero-Centered)

a: query point

* For a Gaussian/normal distribution: e
b: std. deviation

1. Algorithm prob_normal_distribution(a,5):

2. return 1 exp Lo
| V2r b? 2 b2

54



Calculating the Posterior

1. Algorithm motion_model _odometry(x,x’,u) u: control

2. 8, =(F-X) + (V=)

3. 0, =atan2(y'-y,x'-X) - 7] odometry values (u)

a4 O.,,=0'-0- 5},051 What the odometry u tells us

5. By = (¥'=1) + (=)’

6. O, = atan2(y'— Y, X'-x)-0 <>values of interest (x,x’)

/. (’S\mtz =0'-0 - (szl What we compute from the input x and x’
8. p = Prob(8,., = 01 & | Oy | +0,0,1,)

9. = Prob(0, trans?a (Strans + 054(| o1 | F | iz 1)

10. = Prob(d,,, = 02> % |(50t2 |+ (Strans)

11. return p,;, -p, - p;

X: pose or state

This posterior answers: what is the probability density of seeing x’, given x and u under RTR? 55



Uncertainty Propagation in Motion Models

* Repeated application of the motion model for short movements, we
typically obtain banana-shaped distributions

plxlux’)

/N
x’ui X,—ul.

56



Sampling from a Gaussian Distribution

* Sampling from a Gaussian distribution:

0.0045

1. Algorithm sample_normal_distribution(s): | e«

0,0035 |
0,003 |
0.0025 |

1 12
2. return Ezfrand(—b,b)
1=1

0,002 |

Central limit theorem: o.0015 |
0,001 }

Let X1, Xo, ..., X, beniid random variables with E(X;) = p and

2 JXT]4‘QK134—.. .4—;2;1
Var(X;) = o andlet S, = — be the sample average.
Then §,, approximates a normal distribution with mean of p and variance of
C:—f for large n (ie. S, ~ N (u, t%2))

0,0005 |

0

0,587079, 0,00172555

106 samples

Source and examples: https://bjlkeng.github.io/posts/sampling-from-
a-normal-distribution
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Sampling from Odometry Motion Model

1. Algorithm sample_motion_model(u, x):
u=<5 O .0 >,x=<x,y,¢9>

rotl> “rot2 > ~ trans
A

1 ' 5}‘011 = Ghorl + Sample(al | 51‘01‘1 | +a2 6rram)

2 . étrans = 61‘1‘0115 + sample 51‘7‘0115 3 a4 (l érotl | + | 61‘012 |))
3. rot2 — 51‘012 + Sample +a2 éfrans)

' S S
4, X=X+ 5}{;‘(015‘ COS(Q +m

5. V'=Y+0,,,sm@+9,,) sample_normal_distribution
0'=60+6_ +6

rotl rot2

7. Return (x',)',6"




Example of Sampling from Motion Model

59



Example of Sampling from Motion Model

Start location

10 meters
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Sensor Model

Chapter 6, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.
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Sensor Model

* Sensor model (observation model, measurement model) specifies a
probability distribution of receiving observation z; when the robot is
In state x;:

p(Zt | $t)

Algorithm Bayes filter(bel(x;_1), us, 2¢):
for all x; do

@ bel(x) = [ p(ay | ug, x4 1) bel(xy_1) da
bel(xy) = nip(z | x¢) bel(xy)

@ @ @ endfor
return bel ()
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Beam-based Model

 Beam-based models can be used to model range-based sensors.

Sonar sensors Laser sensors
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Beam-based Model

e Scan z at time step t consists of K measurements.
_ 1 k
At = {Zt7°"7zt}

* Individual measurements are independent given the robot position.

k
p(2¢ | w¢, m) = Hp(zfé | Ty, M)
i=1

m: a known map
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Range Sensor Measurements and Noise

1. Beams reflected by

obstacles \
2

. Beams reflected by
persons / caused =e———=
by crosstalk

3. Random
measurements

4. Maximum range———7
measurements




Ray-Casting Model

* Ray-casting model considers the first obstacle along the line of sight.
e Simplest noise modeling: Gaussian noise in the measured distance.

fz(2)q
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Ray-Casting Model

* More realistic ray-casting model includes a mixture of four models.

* It considers dynamic objects, randomness, max rage, and noise.
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Ray-Casting Proximity Model

Measurement noise Max range
0 ZEXP Zmax 0 Zexp Znax
1 _l(z—zexp)2 1
P,m(z|x,m)=77 e? ? Pmax(z|x9m)=n
2J'lfb Zsmall
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Ray-Casting Proximity Model

Unexpected obstacles Randomness

0 Zexp Z 0 Zexp Z max

—;LZ 1
P <zx,m)={’”’“ } P, (2] xm) =1 ——

unexp .
0 otherwise z_
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Ray-Casting Proximity Model

Measurement noise Max range
Zexp Zmax 0 Zoxp Znax _ /’
Unexpected obstacles Randomness
T
(o Y ( Ba(zlx,m) )
aunexp })unexp (Z | x’ m)
P(z|x,m) = :
\HH_H__ ) | A . P_ (z|x,m)
1 ‘
Zexp Zmax 0 Zexp Zmax \ arand / \ })rand (Z | X, m) /
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: Raw Data

Examples

* Measured distances for expected distance of 300 cm.

* Parameters can be estimated using Maximum Likelihood Estimation (MLE).
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Examples: Approximation Results

b

YL

~t

R

Sonar sensors
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\
.
ala
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Laser sensors
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Examples

:‘-’i

S

P(z|x,m)
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Beam-Endpoint Model

* Pure Beam-Based Model is
" not smooth for small obstacles and at edges.
" not easy and efficient to compute.

 |dea for Beam-Endpoint Model to solve this:
* [nstead of following along the beam, just check the end point (of the beam).
» Simple version: whether there is an obstacle at the end point.

" More sophisticated version: what is the distance from the end point to the
nearest obstacle.
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Likelihood Field Model

1.

3.

Given the robot’s location and the
(penetrating) beam, compute the

location of the beam end (21 y.x).

Compute the Euclidean distance dist
between the end point and the end
point’s nearest object in map m.

The probability of a LiDAR sensor
measurement is given by a zero-
centered Gaussian:

phit(Zf’Z't;m) — Egﬁit(distz)
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Likelihood Field Model

* The distance at each point to the nearest
obstacle can be pre-computed, and
stored into a distance matrix or field as a
lookup table.

* The value at each point in this field
indicates the distance to the nearest
obstacle:

= Brute force calculation
= Distance transformation (from CV)
" Brushfire algorithm (from planning)

L e . . =

_____ * % ¥ B _ . . - -
_____ B = e s » E a
_____ P o —
_____ R 8 [ . nm -
_____ O S,
_____ W = 5 o o e S
_____ L T
665444480404 1456%6
65443333334456
54 4322222234145
54321111112345
545321000012345
543210111123 45
545321011123445
5432100012345 6
5432101112345 6
5453210122341456
5432101234456 T7
5432111234566 7
54 432223445678
6544333445678 8
6654448 8566789



Likelihood Field Model

* The distance matrix or field can be saved as an image, which can also be
corrupted by Gaussian noise centered at each point.

* The brighter a location:

= The closer it is to the
nearest obstacle.

=" The more likely it is to
measure an obstacle with
a range finder.
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Likelihood Field Model
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Likelihood Field Model

* The density Phit of a beam-based model can be obtained by intersecting

(and normalizing) the likelihood field by the sensor axis (e.g., indicated by
the dashed line)

01 02 03 <Zmax

Phit (Zf | ZL’t,m)
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Likelihood Field Model

 So far, we only considered the measurement noise model.

* Two other components: maximum range Pmax, and randomness Prand.

phit (25 | T, m) p(zf | @y, m)

N B N\

01 02 03 Zmax 01 02 03 Zmax

Measurement only Full model

Do we need to consider the unexpected obstacle model?
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Likelihood Field Model

* Given robot pose x and LiDAR reading z with k beams, compute p(z|x):

l:

LS A AT D S

Algorithm likelihood_field_range_finder_model(z;, x;, m):

q=1
for all k do Multiply the individual values of p(zé€ | L, m)
ifzf 55 Zmax If the sensor reading is a max range reading, ignore it

Compute end
point location

Check lookup
table (dist matrix)

Compute

8: probability density

Tk = T + T sens COS 0 — Yg sens SIN O + z¢ co8(60 + 0 sens)

Yok =Y + Yk sens COS 0 + T sens SN G + 2F sin(6 + Ok sens)

(x',y") occupied in m}

dist? = min {(CE’Zi@ — $’)2 =+ (yzf — 3/)2

I gt
.,y

Zmax

q=4dq- (zhit : pI‘Ob(diSt2, 012111:) + M)

return q
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Summary and an Open Discussion

e Robot coordinate frame

 Odometry from proprioceptive sensors

nav_msgs/Odometry Message

File: {nav_msgs/Odometry.msg

Raw Message Definition

# This represents an estimate of a position and velocity in free space.

# The pose in this message should be specified in the coordinate frame gluen by header.frame_id.

# The twist in this message should be specified in the coordinate frame given by the child frame id
Header header

string child frame id

geometry msgs/PoselWlithCovariance pose

geometry msgs/TwistWithCovariance twist
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Calculating the Posterior Using Motion Model

X: pose or state

1. Algorithm motion_model _odometry(x,x’,u) . |
S E— u: contro
2. Oy = (X=X +(7-7)
3. O, =atan2(y'-y,X'-X) - 2] odometry values (u)
4. (5;,(){2 =0 '—9 (5;-051 What the odometry u tells us
< ' 2 ' 2
>. étmns = \/(x —X) +(y _y) B
6. (5},031 = atan2(y' -y, x'-x)—-6 <>Values of interest (x,x’)
/. 5;0:2 =0'-0 - (Smﬂ What we compute from the input x and x’
8' p pIOb( rotl rotl’ l | (Srotl | T (5trans)
9- prOb((St trans?a (Strans + a4(| rotl | + | rot2 |))
10 prOb((Sroth r0t23 1 |(50t2 | T (Strans)

11. return p,;, -p, - p;

This posterior answers: what is the probability density of seeing x’, given x and u under RTR? 83



Sampling from Odometry Motion Model

1. Algorithm sample_motion_model(u, x):
u=<5 O .0 >,x=<x,y,¢9>

rotl> “rot2 > ~ trans
A

1 ' 5}‘011 = Ghorl + Sample(al | 51‘01‘1 | +a2 6rram)

2 . étrans = 61‘1‘0115 + sample 51‘7‘0115 3 a4 (l érotl | + | 61‘012 |))
3. rot2 — 51‘012 + Sample +a2 éfrans)

' S S
4, X=X+ 5}{;‘(015‘ COS(Q +m

5. V'=Y+0,,,sm@+9,,) sample_normal_distribution
0'=60+6_ +6

rotl rot2

7. Return (x',)',6"




Likelihood Field Model

* Given robot pose x and LiDAR reading z with k beams, compute p(z|x):

l:

LS A AT D S

Algorithm likelihood_field_range_finder_model(z;, x;, m):

q=1
for all k do Multiply the individual values of p(zé€ | L, m)
ifzf 55 Zmax If the sensor reading is a max range reading, ignore it

Compute end
point location

Check lookup
table (dist matrix)

Compute

8: probability density

Tk = T + T sens COS 0 — Yg sens SIN O + z¢ co8(60 + 0 sens)

Yok =Y + Yk sens COS 0 + T sens SN G + 2F sin(6 + Ok sens)

(x',y") occupied in m}

dist? = min {(CE’Zi@ — $’)2 =+ (yzf — 3/)2

I gt
.,y

Zmax

q=4dq- (zhit : pI‘Ob(diSt2, 012111:) + M)

return q
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Particle Filters

Chapter 4.2, Sebastian Thrun, Wolfram Burgard and Dieter Fox.
“Probabilistic Robotics.” MIT Press. 2005.
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Particle Filter

* Definition:
= Particle filter is a Bayesian filter that samples the whole hypothesis space by a
weight function derived from the previous belief (and motion/sensor models).

" Particle filter is a Monte Carlo method — a computational method that relies on
sampling to obtain numerical results.

* |n robot localization,

" Particle filter is used to estimate robot poses that are non-Gaussian and non-
linear in general.

= Samples or “particles” are used to represent state hypothesis (i.e., poses) and
belief (as a distribution).

= Particle filter updates its belief through survival of the fittest particles (best fit
to sensor observations).
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Weighted Samples

* Goal: dealing with arbitrary distributions using a smaller number of
samples, or particles in the context of particle filters.

IT

>

— Frequency-based particles
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Weighted Samples

* Key idea: multiple weighted particles to represent an arbitrary
distribution with a smaller number of particles.

/T

>

c o @O . Qoo
¥ Weighted particles
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Particle Set

* Set of weighted particles:

x = {(a

7, )
J=1,...

N

state

importance

hypothesis weight

* The particles represent the posterior

p(x)

Zw 5[J($)

yoJ

1.2

1.0

0.8

0.2

0.0

02 L

Delta (or Dirac) function
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Particles for Approximation

* We know that particles can be used to approximate a PDF.

* But how to draw particles form a distribution?

probability / weight

f(x)
samples

LRI AT L1

probability / weight

f(x)

samples

AR A0 A
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Closed Form Sampling

* Closed form sampling is only possible for a few distributions.

e Sampling from a Gaussian distribution:

il 12
z < = » rand(—o,o0)
2’£=1

f(x)
samples

probability / weight

| U AR OWRM R L1

How to sample from other or arbitrary distributions?
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Importance Sampling Principle

* We can use a different distribution g to generate samples from f.
* Target distribution f (blue).

. . . T (.1 )
* Proposal distribution g (red). pmtﬂ?;tig
* Pre-condition: samples

fx)>0-g(x)>0

* Account for the “differences
between g and f ” using a

weightw = f(x) / g(x) at a " '
partiCUIarx‘ . ..l.uquIIMHllmllﬂlﬂl_“H” ‘ | !

X

probability / weight
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Importance Sampling Principle

* Draw particles from g.

* Compute weight for
each particle:

= |[n the figure, the taller
the particle is, the higher
weight the particle has.

e Use the weighted particles
to represent f.

probability / weight

proposal(x) ——
target(x) ———
samples

umnmmmnmulm B

X
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Particle Filter for Bayesian State Estimation

* Particle filter is a non-parametric method to implement a recursive
Bayes filter:
» when distributions are not Gaussian.
» (often) when models are non-linear, e.g., motion models.

* The more particles we use, the better is the estimate.

* Prediction <-> drawing from the proposal.

* Correction <-> weighting by the ratio of target and proposal.

X : state (e.g., pose)

u : control
Z : observation

Prediction:  bel(xzy) = [ p(x | wy, x4—1) bel(xy—1) do
Correction:  bel(xy) = n p(z | x¢) bel(xy)
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Particle Filter Algorithm

1. Sample particles using the proposal distribution:

7]
Ly W(-Tt ‘ . ) The proposal distribution is
user defined. Then the math
equation of the weight must
till target(a:gj]) be manually derived.

Wy It is a design question!

2. Compute the importance weights:

proposal (mi[gj] )

3. Resampling: Draw sample i with probability wf] and repeat J times:
* The newly sampled particles have equal weight.

* This allows us to convert the weighted particles to frequency-based particles
to represent the same distribution.
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Particle Filter Algorithm

Particle_filter (X; 1, uq, 2¢): x : state (e.g., pose)

I Xy = A u : control (e.g., odometry)

2: for j =1 to J do z : observation (e.g., from LiDAR)

3: sample :UP] ~ 7(x¢) X : temporary particle set

4 ) i p(a:_{;’]) X : particle set after resampling
| ol . 7t : proposal distribution

d: Xy =X + <x£3],w£-”> p : target distribution

0: endfor

7 for j =1 to J do

8: draw ¢ € 1,...,J with probability o wk]

0: add 71" to X,

10: endfor

1A return X;
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Monte Carlo Localization

* As particle filter is a Monte Carlo
method, robot localization using
particle filters is also called
Monte Carlo Localization.

* Proposal is the motion model:
l}[gj] ~ p(Tt | Tp—1, Ut)

e Correction via the observation
model to compute weights:

] N 5 1
Sl S proposal Sl

(Zt \ Lt m)

oo

A A

Algorithm sample_motion_model(u, x):
U= (5}_0,1,6 0 ),x = (x,y,@)

rot2 >~ trans

57‘0{1 = 51'0[1 + Sample(al | 51‘0!1 | +a2 671‘0)13)

2 ) 5tmns = 5trans + Sample

3. 5}‘01‘2 = érof?, + Sample 1

' ~ ~
4. X=X+ 5imns COS(H + é;\mil)

~

5tmns + a4 (| Csrofl | + | (Sror2 I))

5. Y=y+0,,,sm@+9,,) sample_normal_distribution

, A A
0 = 9 + 51'0[1 + 5}‘0!2

7.

Return (x',y',6")

Algorithm likelihood _field _range_finder_model(z;, z;, m):

q=1
for all k do Multiply the individual values of p(zf | Ty, m)
ifzf 7& Zmax If the sensor reading is a max range reading, ignore it

Compute end
point location

Check lookup
table (dist matrix)

Compute
probability

return

Tk = T + Tk sens oS 0 — Yj; sens SIN O + 2y cos(6 + Ok sens)

Yk = Y + Yk sens COS 0 + ) sens Sin 6 + zf sin(f + Ok sens)

dist* = min {(a:zéc —2')? + (yr — y')? ‘ (x',y") occupied in m}

T,y

Zmax

q - q ' (zhit ° prOb(diStQ’ 0-12111}) + Zrandom)

q
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Monte Carlo Localization

Particle_filter(X; 1, u, 2¢):
X=Xy
fomi==lilicolYillde

sample 3::[‘7] el bl o

[J] I |J|
&_&+< il

xt , Wy

[J] 3

endfor

fompi=lilicolVillde
draw 1 € 1,...,J with probability o wk]
add aziﬂ to X;

endfor

return X

P2 XSS P

= &
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Resampling

* Draw sample i with probability w,{i] , repeat J times.
* Informally: “Replace unlikely samples by more likely ones”

 Survival of the fittest
* “Trick” to avoid that many samples cover unlikely states

* Needed as we have a limited number of samples
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Resampling

* Roulette wheel with n bins e Stochastic universal sampling
* Brute force 0(nJ), or * Also called low variance sampling
binary search 0 (nlog]) * Complexity: O(n)
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Particle filter(X; 1, uy, 2;):
Xe=X=0
rodii=lilcolYiide

sample ;Ul[g’] ~ p(ay | ut,mgj_]l)

wij] = p(z xm)
X, = X + ( )

J J
It ’wt

Monte Carlo Localization Example

endfor

tonla=lillscliide
dnawilelc I J with probability o wy]
add w,[fﬂ to X;

endfor

return X;

* Solving “where am |?” using particles:

HE® ® IS &~ W o

)

X
| TRV U TV T T (O VTV O W TW W VO WUNTY TV O VT O 1 o (1T 11 »-

 |Initialization: (in the first step) robot pose particles are drawn randomly and
uniformly over the entire pose space.
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Particle filter(X; 1, uy, 2;):
Xe=X=0
rodii=lilcolYiide

sample ;Ul[g’] ~ p(ay | ut,mgj_]l)

wt[j] = p(z xmz
X, = X + ( )

J J
It ’wt

Monte Carlo Localization Example

endfor

oathi=ilicoWido
dnawilelc I J with probability o w,EZ]
add x,[gﬂ to X;

10: endfor

11: return X;

* Solving “where am |?” using particles:

bel(x)

_-IIIIIII 1 IIEIII i u 1 n anm i “ ‘|ill 1 ‘I ‘ |IIIII NIEE B 1 Bl LIEE Wi niamis il E 1 [ U W l|‘ m LU I O Iy} na i M I W umnne h

X

e Correction: use the observation model, Monte Carlo Localization assigns a
weight to each particle.
 Resampling must be performed after each correction step.
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Particle filter(X; 1, uy, 2;):

1l Xe=X=0
2 tutlgi=lilitolYilide
° ° 3: sample ;U,[gj] ~ p(:L‘t | ut,wﬂl)
Monte Carlo Localization Example e
5: )Et:/’\?t—l—@tj,wtj)
6: endfor
I( tonlii=llilicoltiido ”
* Solving “where am I?” using particles: i el R e S
L add x;" to X;
10: endfor
11: return X;
.+« 1+ 1+ + r 1+ & ¢ ¥ { ¢+ + ¢+ + | & ¢ ¥ ¥ ' & & ¥ | [ {§ ¥ ' 1 & & [ | [ | | 1|
IIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIIIIIIIIIIIII
[ 1 1 1 1 1 1 1 | || 1 1 1 & 1 1 1 [ 1 ] | P 1 1 § [ 1 1 |
IIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIII
bel(s)
X
AT WA IO TN TR WO A TN TN ATWNAT " RTRUCRNT T I I TR T TR (1 TN w1

* Prediction: use the motion model to sample particles that represent the next
robot poses.

104



Particle filter(X; 1, uy, 2;):

1l Xe=X=0
2 tutlgi=lilitolYilide
M s 8% sample ;Ul[gj] ~ p(ay | ut,mﬂl)
Monte Carlo Localization Example L
5: X, = X + (zf, w)
6: endfor
fit tonla=lillscliide A
* Solving “where am I?” using particles: I e i i
L add x;" to X;
10: endfor
.+ + 1 1t T+ ¢+ + &+ 1 1+ & & ;1 °§¢ ¢+ § § 7 @ §° | | [ | | [ | : return X;
I|I|I|I|I|I|I|I|I|I| |I|I |I|I|I|I|I|I|I|I|I|I|I|I|I| |I|I|I|11i||t |X||
:l:l:l:l:l:l:l:l:l:l |:|: |:|:|:|:|:|:|:|:|:|:|:|:|:| |:|:|:|:|:|:|:|:|:|:|
A
p(z[x)
— A A A
} bel(x)

e Correction: use the observation model, Monte Carlo Localization assigns a
weight to each particle.
 Resampling must be performed after each correction step.
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Particle filter(X; 1, uy, 2;):

1l Xe=X=0
2 tutlgi=lilitolYilide
M : ik sample ;Ul[gj] ~ p(ay | ut,mﬂl)
Monte Carlo Localization Example e
5: )Et:/’\?t—l—@tj,wtj)
6: endfor
I( tonlii=llilicoltiido ”
* Solving “where am I?” using particles: i el R e S
L add x;" to X;
10: endfor
11: return X;
r +r +r +r + & 1+ 1 1 ¢+ & ¢ 1 & 1+ § 1 & 7 1§ ¥ {1 ¥ 1 & ¥ { & | § | | | 1 1
I|I|I|I|I|I|I|I|I|I| |I|I |I|I|I|I|I|I|I|I|I|I|I|I|I| |I|I|I|I|I|I|I|I|I|I|
e g e e e e
bel(x)
X
I I | Lmn | (1T IR N | T Y N NN A NI T T -

 Repeat the prediction by sampling from the motion model, correction by
sampling from the observation model, and the resampling procedures.
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Monte Carlo Localization Example
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https://www.youtube.com/watch?v=0XbKZvXt5c4

- . + v 1

RACECAR

Mobile Platform
http://racecar.mit.edu

ra :
https://www.youtube.com/watd


https://www.youtube.com/watch?v=-c_0hSjgLYw
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https://www.youtube.com/watch?v=nA-J0510Pxs
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