Problems with EKFs

* Taylor series expansion = poor approximation of non-linear functions,
success of linearization depends on
" Limited uncertainty and
" Limited amount of local non-linearity

* (Manually) calculating partial derivatives is a pain
e Cannot handle multi-modal (multi-hypothesis) distributions

* What’s next?
* Unscented Kalman Filter (how to better generalize to non-linear models)

* Non-Gaussian noise Kalman Filter (how to generalize the Kalman Filter when
noise distribution is Non-Gaussian)

= Stability and Divergence (how to design a stable KF that does not diverge)

COMPSCI-603: Robotics

Simultaneous Localization and
Mapping (SLAM)

Partial slide courtesy by C. Stachniss

ANYmal C 1

SLAM Overview ¥ A5 N couomn

~
Drill ™

* Simultaneous Localization T

.) e
r | P
™, ~ & — |
i i
[€ % >l
Survivor: . ne SRR
{ ! g -
A ! ol € |
& ! prilll s
i gl St "
L L/ Thae - &
S . -~
! / |
} ” : ,‘f
! %/ \ [
; \ - b
i ; (
;
H
: :
:

and Mapping (SLAM) builds
a map of the environment
from a mobile robot (or a
mobile sensing platform).

e At the same time, SLAM
localizes the mobile robot
in the map build so far.

* SLAM is a chicken-and-egg
problem.

Left - Front

2

obof:; in course
T

B i |

Yo% \oFe \r _,,..., \J',‘....t-‘y..
i ot B ol el it iy >

Top View

‘‘‘‘‘

|
'~

J ANYmal 1
- m ANYmal 2

ANYmal 3
» ANYmal 4

https://www.youtube.com/watch?v=fCHOU-fw2c0

SLAM Applications

Self-driving cars in the wild

Indoor mobile robot

Guanwei lJia, Xiaoying Li,
Dongming Zhang, Weiqing Xu,
Haojie Lv, Yan Shi, and Maolin
Cai. "Visual-SLAM Classical
framework and key
Techniques: a review." Sensors
22, no. 12 (2022): 4582.

Aerial UAV

5

Extended Kalman Filter (EKF)-based SLAM

Definition of the SLAM Problem

* Given
= Controls
U1.T = {ulau29u3a < -,UT}
= Observations
Z1:T — {Zla Ry &3y s ZT}
* Wanted
" Map of the environment
T

= Path (or current pose) of the robot

Lo T — {3’?0;33'1;3?27 . -;fL'T}

or

EKF SLAM

 SLAM can be formulated under the Bayes filtering framework to
estimate:

p(.ib‘t,m ‘ Z1:ts UT: t ? *
<:5 u,,
Y

* Extended Kalman Filter (EKF) can @
be used to solve the SLAM problem.

= Kalman Filter is a recursive Bayes
Filter for the linear Gaussian case.

" EKF for dealing with non-linearities.

Recall EKF

Extended_Kalman filter(u;_1,>:_1, us, 2¢):

fzt — g(ut;ﬂt—l)
2t =Gy X ng + Ry

Kt — it H?(Ht St Hér -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t

Estimation using nonlinear
motion model g

Correction using nonlinear
sensor model h

EKF SLAM

* EKF SLAM applies EKF to SLAM.

* EKF SLAM estimates robot’s pose and locations of landmarks (e.g.,
points in the world) in the environment.

* State space (for the 2D plane) is:

o T
:Ct - (:Cj y;e 7m1,337m1,y7"'7mn,xamn,y)
robot’s pose landmark 1 landmark n

" Robot pose includes x, y, and 6.
" Landmark locations includes x and y coordinates.
= Assumption (for now): known landmark correspondences.

10

EKF SLAM

* Map with n landmarks: (3 + 2n)-dimensional Gaussian.
* Belief is represented by:

Lt Emts{:t Z:’L‘tml 0 ooc Emtmn
1 Emlwﬁ Zml m1 Zmlmn
azs Emna:t Zmnml Emnmn

11

EKF SLAM Steps

State prediction
Landmark prediction
Measurement

Data association
Update

A S

More compact math notation

12

EKF SLAM Overview: Initialize State

X E:L‘ta:t Emtml
(mtl \ / Emlmt Emlml

13

EKF SLAM Overview: Predict State

L thwt Ea:tml Z:Ctmn
(mtl \ / Zmlmt Emlml Emlmn \
\ mn)\ Bonage Zmam: S)
7’ by

14

EKF SLAM Overview: Predict Landmark Locations

x Dig,x, 2mpmy - -- 2zem.
(mtl \ / Zmlxt Emlml Emlmn \
\ mn) \ Zmee Zmam, Sramn /|
7’ by

15

EKF SLAM Overview: Obtain Measurement

X E:L‘ta:t Emtml Emtmn
(mtl \ / Zmlmt Emlml Emlmn \
\ mn) \ Zmee Zmam, S)

16

EKF SLAM Overview: Perform Data Association

17

EKF SLAM Overview: Update State

18

EKF SLAM

* Setup
= Moves in a 2D space
= Observation of point landmarks
= Known number of landmarks
= Known data association
= Range-bearing sensor

= Velocity-based motion model

Landmark

Estimated

True

*
53

19

Velocity-Based Motion Model
* Arclength:

[=v- -At =1 -wAt

(x',y")
wAt
e Rotation radius:
VAt ”
-------------- <X.y>
y < X,y r= [—
r w
wAt .
65— 90 0 * Circle center:
KoY X
v X, =X —T-cos(0 —90)
control MZ[V:| = X—TI"- Sin 9
(0))]

Y. =y —r-sin(6 —90)

=X+4+r-cos0
20

Velocity-Based Motion Model

X' =X, +71-cos(0—90 + wAt)
= X. + r - sin(0 + wAt)

* New pose after At: y' =y.+r-sin(0 — 90 + wAt)

=y. — - cos(0 + wAt)
x’ T.+ 2 sin(f + wAt)
y’ = Yo — < cos(0 + wAt)
o' O+ wAL

\ C [—LsinfH & sin(0 + wAt)
— - = cosf — = cos(f + wAt) y
wAt

e

21

EKF for SLAM: Predict State Using Motion

* Goal: Update state space based on the motion.
* Velocity-based motion model in the 2D plane:

x’ T —oEsinf + - sin(0 + wiAt)
Y’ = y |+ Lcosf — cos(0 + wiAt)
0’ 0 wy At

-_

g::c,y,Q(ut:(xvyag)T)

* How to map this motion model in 3D space to the (3 + 2N)-
dimensional state space in the EKF-SLAM?

22

EKF for SLAM: Initialize State

* Platform starts in its own reference frame (all landmarks unknown).
e State has (3 + 2N) dimensions:

w = (000 ... 0)F

(

oo oo
oo oo
oo oo
A O oo
N oNoNe

23

EKF for SLAM

1:

) 2:
3:

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

l}t — g(utaﬂt—l)
2t =Gy X Gz + Ry

Kt — it Hg(Ht St Hg -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t

24

EKF for SLAM: Update State

* From the motion in the plane:

x! T —oksinf + ot sin(6 + wiAt)
Y’ = y | | Zcosf— 2k cos(0 +wiAt)
0’ 0 wy At

* To the (3 + 2N)-dimensional state space:

/ T
/i,\ /?j\ L0 0 0...0 — 2t ginf + 2 sin(6 + w; At)
B 0 1 0 0...0 o T
Y = o 1+l 0 01 0 0 Lcost — 2t cos(0 + wrAt)
. i) oveers) we B
FI

-

g(ut ,le't)

F, : Projection function that projects variables from 3D space to the 3 4+ 2N space

25

EKF for SLAM

1:

2:
) 3

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

—Hr—=—g{ttr =T Done
2t =Gy X G? + Ry

Kt — it Hér(Ht it H;:_F -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t

26

EKF for SLAM: Update Covariance

* The motion model only affects the motion of the robot, but NOT the
landmarks.

* Representing the motion model’s Jacobian in the (3 + 2N) space:

Jacobian of the motion (3x3)

l

- (91
|

Identity (2N x 2N)

27

Jacobian of Motion Model

(

X

Y
0

)

—Ztsinf + 7t sin(f + wiAt)

Yt cosl —
Wi

=t cos(0 + wiAt)

t

Wt At

)

28

Jacobian of Motion Model

5 a: —Ztsinf + - sin(0 + wiAt) '\ |
“C = BT (g)+(R0 T)
3 _ —2ksing + b sin(f + wiAt) _

= ”a(:c,y,e)T(o emOT Ll T T)

Wt At

Jacobian of Motion Model

Gy

9 t

P [x —Ztsing + ot sin(0 + wiAL)
= y | + -cost — 2t cos(0 + wiAt)
i Wt At |

I+ 3.y 07 ” Yt o5 — =t cos(0 + wiAt)

t

Wt At

9 (“Lsinf + - —t sin(0 + wy At))

0 0 —Ztcosf+tcos(f + wiAt)
I+ (0 0 — tsin 6’—|—— sin(6 + wyAt))

0 0 0

AN ¢

Jdx Oy 06

30

Jacobian of Motion Model

Gy

t

P [x —Ztsing + ot sin(0 + wiAL)
= y | + -cost — 2t cos(0 + wiAt)

v Wt At
9 oosind + 2t sin(6 + wy At)
I+ 3.y 07 ” 0086’ — w—i cos(6 + w; At)

Wt At

0
— L cos O+ - cos(0 + wiAt))

0 0 —Ztcosf+tcos(f + wiAt)
I+ (0 0 81n6’—|——sm(9—|—tht))

0 0

0

1

0

—ZF sin 0+ 2E sin(0 + wi At)
1

31

EKF for SLAM

1:

2:
) 3

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

—Hr—=—g{ttr =T Done
2t =Gy X G? + Ry

2t

— GtEt_lGér—l—Rt
G* 0 Yor Dam (GHYL 0
(0 I)(zm zmm>(o 1)tH

(GES(GH)T G Sam
- ((Cm)” S) T

32

Summary of Estimation in EKF for SLAM
EKF_SLAM _Prediction(p; 1, %1, Ut, 2t, Ct, Ry¢):

LRIV O o0 Projection function that projects variables
2: by = R IR R0 R ECE 0 from 3D space to the 3 4+ 2N space
3x (3 + 2N) Q10T SIS

Ut

L Cos fhg—1,0 — == cos(pi—1,0 + wiAt)

W

tht

3 U = Ui— 1+FT
(3+2N)x 1

— 2L COS g1 9+— cos(pi—1.0 + wiAtl)
4: Gf — i/ + Fg
(3+2N)x (3 + 2N)
3% it — Gt Zt—l Gf +
(3+2N)x (3 + 2N)

”t Sin fty_ 1,0+ -+ Slﬂ(.U»t 1,0 +wiAt) F;

(—f81nut 19—|——t Sl]fl()ut 19+tht)
0 0
0 0O
0 0 0
F

I 33

EKF for SLAM

1: Extended_Kalman filter(u:_1,>: 1, us, 2¢):

2: - o Done

3: —gr——G}—Ezfl—GtL!—RT Done

4 Ky=3%, H'(H, S, HT + Q,)™!
D! pe = fiy + Ki(ze — h(fie))

0: Et — (I — Kt Ht) Et

7 return [, 2t

34

EKF SLAM: Correction in EKF for SLAM

e Assume know data association on landmarks:
= ¢; = 7: i-th measurement at time t observes the landmark with index j.

 |f a landmark is observed for the first time, initialize the landmark.

* Compute the expected observation based on sensor model
 Calculate the Jacobian H of a sensor model h.
* Proceed with computing the Kalman gain.

35

Range-Bearing Sensor Model

* We use range-bearing observations,

for observation beam i: ; T
= (Tta (/bt) @

 |f a landmark has not been observed, we can initialize it with:

i Hili [tz (i COS(@% Tl ﬂt,ﬁ)

Gy)\ By)T\ 7 osin(@} + fieo)

Hj,y Mty Ty S\ Py T [t 0
location of estimated location relative measurement
landmark j of the robot from beam i

36

Range-Bearing Sensor Model

5 — 533’ L 7,x ﬂt,a:
* Convert between 2D location — 5y)\ iy — Bty
and range-bearing .
observation for landmark j: q = 090
3 V4
: ata’n2(5ya 5w) o ﬂt,@
= h(j)
- Oh(1
 Compute the Jacobian: IOWHZ' — (_Mt)
T Ofit

low-dim space (:E, Y, 0, mi x, mj,y)

37

o 53} _j,a: — Utz
Range-Bearing Sensor Model 0 = (ay) :< S
g = 016
e Jacobian: 2 = (atan2(5y\,/(?w) e)
lowazl _ ah(lu_t) = h(j)
t Ofit

(%
Ox
Oatan2(...)

low-dim space
('CC) y) 9? mj7$7 m.]ay)

0/q)
5y
Oatan2(...)

ox

_ 1(—ﬂ5w
q 5y
8\/6 1 1
*Fg.,: Y- = _ —
& ox 2 q26$(1

Oy

_\/aéy 0 +\/§5$ \/5521

38

Range-Bearing Sensor Model

* Project the Jacobian to the (3 + 2N)-dimensional space

low H T 1(_\/6633 _\/a(sy 0 —|—\/§5$ \/§5y
t =) —0 — —9 0
q Yy T q Yy X
(1 O 0 0---0 0 O
O 1 0 0---0 0 O
1 low 717 _ — 00 1 0.0 00
Ht p— Hthg’j FCB,j_ 0 0 O 00]_ 0
5x@+2M 1 0 0 0 0---0 0 1
N——
\ 2j—2

landmark j

o O O O

EKF for SLAM

B

1:

2:
3:

Extended_Kalman_filter(u; 1, > 1, us, 2¢):

- gy o7y Done

=67 =&+ Done

Kt — it H?(Ht it H;:_F -+ Qt)_l
pe = fiy + Ki(ze — h(fie))

Et — (I— Kt Ht) Et
return [, 2t

40

EKF SLAM: Correction (1/2)

EKF_SLAM_Correction

2
_ [oy 0
6 Q= ("o)
7. for all observed features z; = (1, »)1 do
8: J = ¢
9: it landmark j never seen before
, Pjaxz \ _ [Hta ri cos(¢; + fit,p)
10- _ — _ _|_ ?: . {L —
Fj.y Ht,y ri sin(¢f + fit,o)
11: endif
12: O = Oa) = (lf‘” B lftT)
Oy gy — Hty
13: qgq=10"0

S

14: “t = (atan2(0y, 0x) — fit,0)

)

41

EKF SLAM: Correction (2/2)

16:

17:
18:
19:
20:
21:

22:
23:

(

T,]

o OO O =
S oo = O
OO = OO

s

5’9
T

(Hy
(

Hi =1
t = gq

K! =%, H!

fiy = iy + Ki(2f —

o O O O

{CDCDOC)CD

2j—2

—v/@0y

—0p

£)

> = (I — K! H) %,

endfor
ft = [t
¥y =Y

return [is, 2t

O = O O O

—q
) Ef H’LT 1 Qf)

_—0 O O O

42

EKF for SLAM

1: Extended_Kalman filter(u:_1,>: 1, us, 2¢):

2: - o Done

3: —gr——G}—Ezfl—GtL%- Done

4: = ;gr 3 ? =L Done
D: —ﬁq,iﬁ-rl—léf@ﬁ—ﬁb%a— Done

0: %Hrgﬁ—gr Done

7 return [, 2t

43

EKF SLAM Algorithm

EKF_SLAM Prediction(u;—1, %¢—1, us, ¢, Ct, Ry):

4R

vt N3
2L cos p-1,6 —

thIf

0 —grcosp—1,0+t
0 ” “sin p—1,0+ 2
0

e h el e S ol o

Ry

—orsinpy_19 + 5 sin(pg—1,0 + wiAt)
cos(pe—1,0 + weAt)

cos(u,t 1,6 + wiAt)

sm(,u,t 1,0 + wiAt)
0

Iy

EKF_SLAM _Correction

o2 0
6: Q= (0 042)
7: for all observed features zi = (ri, ¢i)7
8: j=ct
9 if landmark j never seen before

10: (ﬁj,a:) _ (Lt)+(ri cos(¢ + fit,o))
.y [ty Ty sin(gf + [ite)
11: endif
Oy Hiy — Hty
13: q=0"0
. i V4
14: ‘T (atan2(dy, 0,) — fit.e
(1 0O 0 0---0 0 0 0---0\
o 1 0 0---0 0O O 0---0
) oo 10000 00
B Fei=10900 0010 00
o o0 o0 0---0 0O 1 0---0
\ 27-2 2N—2j)
. i1 V@ —/q0% 0 +/q0: /g0y |
17K = S S, 1T 4 Q)
18: Mt—Mt-I-K(—Zf)

19: S, =(1- K%H@)zt

20: endfor
210 pe =
22: Et Et

23: return py, 2y

.youtube.com/watch?v=SxR UP2P1B

https://www.youtube.com/watch?v=SxR_UP2P1BQ

Graph-based SLAM using Pose Graphs

46

Pose-Graph SLAM

* Graphs can be used to represent a set of robot poses where pairs of
poses are connected by edges that encode spatial constraints
between the robot poses.

" Graph represents the SLAM problem.
" Each node in the graph represents a pose of the robot during mapping
" Each edge between two nodes encodes a spatial constraint between them.

* Pose-Graph SLAM: Build the graph of robot poses and find a pose
configuration that minimize the error introduced by the constraints.

47

Pose-Graph SLAM

* Constraints connect the poses of the robot while it is moving.

* Constraints are inherently uncertain.

P> Robot pose Constraint

48

Pose-Graph SLAM

* Observing previously seen areas generates constraints between non-
successive poses.

P> Robot pose Constraint
49

—

AT e -
Jedd ut g
N »

* Once we
have the
graph, we
determine
the most
likely map by
correcting
the nodes.

e Then, we can
render a map
based on the
known poses.

Overall SLAM System

* An overall SLAM system includes front-end and back-end that interact
with each other.

* A consistent map helps to determine new constraints by reducing the

search space.

* We first focus on the back-end for graph optimization.

raw
ata

node positions

v

Graph
Construction

(Front-End)

graph
(nodes & edges)

>

Graph
Optimization

(Back-End)

*

52

Least Squares Optimization in General

* It is an optimization approach for computing a solution for an
overdetermined system:

" “More equations than unknowns”

* It minimizes the sum of the squared errors in the equations.

* It is a classic approach to a large set of problems:

" Graph optimization for SLAM

" \arious machine learning methods

53

Least Squares Optimization in General

* Given a problem described by a set of n observation functions:

{fi(x)}i=1:n
* Let
= X be the state vector
= Z; be a measurement of the state X

» Z; = f;(x) be afunction which projects X to a predicted measurement
* Given n noisy measurement Z1 -, about the state x
* Goal: Estimate the state X which best explains the measurements Zq -,

Recall: how is this done in probabilistic formulations?

54

Least Squares Optimization in General

f1(x) =24 Z1
. ;' fo(x) = zo 7

AN

fn(x) = zp, Zn

state predicted real
(unknown)| |measurements| |measurements

Error Function for Least Squares Optimization

* Error e; is often defined as the difference between the prediction
and the actual measurement:

e;(x) = z;— fi(x)

* We assume that the error has zero mean and is normally distributed.
= Gaussian error with covariance matrix {2, (also called information matrix)

* The squared error of a measurement depends only on the noisy
states and is a scalar:

€; (X) = €4 (X)Tﬂiei (X)

56

Graph Representation

* The graph is assumed to include n nodes X = Xq-,
* Each node X; is a robot pose at time ¢;

* A constraint encoded by the edge exists between the nodes if the
robot moves from X; to X;4 1

= Edge is computed using a motion model (e.g., odometry) -
= Measurements Zj; are obtained by sensors (e.g., GPS) 1@? a

o—® >
X \ Xi+1 _ 4 A
Y
The edge is estimated » p
using a motion model g

57

The Graph

* An edge also exists between the nodes if the robot observes the same
scene from X; and fromX;, computed iteratively by a motion model.

e Construct a “virtual measurement” about the position of X that is
seen from X; by using the environment as a reference.

» Edge represents the position of X seen from X; based on the observation.

P o o®

xj

Measurement from x; Measurement from X

58

Transformations

* How does X; sees X7
* Express this through transformations

e Let X; be transformation of
the origin into X;

* Let X; ! be the inverse transformation

* We can express relative
transformation X;lxj

* Transformations can be expressed
using homogenous coordinates

59

Transformations

* Homogenous coordinates (also called projective coordinates)

* Homogenous coordinates are widely used in projective geometry to provide
an alternative representation of gematric objects and translations.

* N-dimensional space expressed in N+1 dimensional space.
" Projection to homogeneous space: (. o)T & (2.4, 2. 1) = (a,b,c,d)T

T
L T a b c\" _ T
= Back-projection to 3D space: (a,b,c,d)” — (d’d’d) = (z,y,2)
100t 3D 3D
010t _(R3DP 0 [R3D ¢
T™=loo1t R_(o 1) X_(o 1)
000 1
translation rotation rigid-body

60

Transformations

* Transformations can be expressed
using homogenous coordinates.

e Estimation-Based edge:
—1
(X/g, Xj)

describes “how node i sees node j”

61

Pose Graph Formulation

* Measurements z;; are affected by noise (e.g., GPS).
* Covariance matrix for each edge (2;; to encode its uncertainty.

* The “bigger” €2, ;, the more the edge “matters” in the optimization.

177

observation (2, 9%;) —— edge
of X;fromX;

nodes
according to
the graph

62

Error Function

* Error function for a single constraint

eij(xi, %) = t2v(Z ' (X; 1X;))

!
measurement

I

x; seen from Xx;

* Error as a function of the whole state vector

eij(x) = t2v(Z; ;1 (X; X))

e Error takes a value of O if
Zij = (X;'X;)

63

Pose Graph Optimization

e Goal:

x* = argmin Zeg;-ﬂije@-j
v)

observation (2i5, ;) —— edge
of XjfromX;

nodes
according to
the graph

64

Optimization Using the Gauss-Newton Algorithm

* Define the error function

* |If nonlinear, linearize the error function
* Compute its derivative

* Set the derivative to zero

* Solve the linear system

* |terate this procedure until convergence

65

Pose Graph with Landmarks

*

. *
> A
*

' % Feature

“ < B> Pose

Constraint

Pose Graph with Landmarks

 Nodes can represent: X
P : SN *
= Robot poses >
* Landmark locations * ‘
e Edges can represent: < Y 4
" Pose displacement from a motion model <
*" Landmark location estimation
* The minimization optimizes the landmark % Feature
locations and robot poses B> pose

" E.g., in the (3+2N) space for 2D SLAM Constraint

https://www.youtube.com/watch?v=p-G98jGfZb4

SLAM Front-Ends

69

Graph-Based SLAM

* Constraints are represented by the edges that connect the nodes
computed using a motion model.

e How to obtain the constraints?

%

P Robot pose Constraint P Robot pose Constraint

Bl a

| |

Y
)

%
>~

4

»

=]

70

SLAM Front-End

* Front-end creates constraints that can be obtained from a motion
model (for short-term edges) and matching observations (for long-
term edges).

* Popular methods by matching observations: Dense scan-matching,
landmark-based matching, descriptor-based matching

node positions
¢ |

Graph Graph
% Construction ’ Optimization
(Front-End) graph (Back-End)

(nodes & edges)

*

71

Problem Formulation

e Given: two corresponding point sets (e.g., obtained from LiDAR):

Q=141,---.an} P=A{py,--.,Pu}
with correspondences C = {(i,7)}.

e Wanted: translation t and rotation R that minimizes the sum of the
squared error:

E(R.t)=) la;—Rp;—t|
(4,5)eC

where p;and g, are corresponding points.

72

Center of Mass

* The centers of mass of the corresponding points in both sets:
1 1
MQZ@Z% “P:mng’
(¢,J)€C (i,5)EC

* Mean-reduced points by subtracting the corresponding center of
mass for every point:

Q' {a, — ng} =1{q}}
P = {p; —pp}={p}}

73

Orthogonal Procrustes Problem

* After translating to overlay the centers of mass for the two point-
clouds, minimizing:

2
E'(R) = |llg}---qn] — RIPY - - Pl %
is equivalent to minimizing:

E(Rt)= > |lg;—Rp; —t|’
(1,7)€C

74

Point Alighment and Transformation

. !.'va-*"‘“;:?":“- N
»y PR AP A AN
-
RN R\ |

rotate

..Z.,-.s s’ 4
r"h"
o %

{

X |
g Y

B SEUIK T LN P

Image courtesy: Ju

75

Point Alignment with Unknown Correspondence

* If correct correspondences are not known, it is generally impossible
to determine the optimal relative rotation/translation in one step

--- but we can iterate!

76

Iterative Closest Point (ICP) Algorithm

* Key idea: iterate to find alignment.

* Two major steps:
= Data association (also called correspondence identification, matching)
o E.g., closest point, point-to-plane association, surface normal, local descriptor, etc.

" Transformation
* ICP converges if sharing positions are “close enough” with sufficient
overlap.

/\/‘” -_— 7
/ \ /ﬂ.
) S

77

Point-to-plane / Iteration 2

Point-to-point / Iteration 2

LcghbolgTi

//www.youtube.com/watch?v

https

https://www.youtube.com/watch?v=LcghboLgTiA

Path Planning Using the Map

79

Maps from Pose-Graph SLAM

80

Grid Occupancy Maps

* Discretize the world into cells/grids (also called cell decomposition)
* Grid structure is rigid

* Each cell is assumed to be occupied or free space

* Non-parametric model

* Large maps require substantial memory resources

* Do not rely on a feature detector (e.g., no landmarks)

81

Grid Occupancy Map Assumptions

1.

2.

3.

Each cell is a binary random variable 1
that models the occupancy

The world is static (most mapping

)] always occupied
systems make this assumption)

always free space

no dependency
The cells (the random variables) between the cells

are independent of each other

82

Path Planning on Grid Occupancy Maps

* The goal of path planning is to find a collision-free route from a
starting point to a target point (or from one pose to another pose).

* Path planning methods:
» Search-based methods
= Sampling-based methods

" Learning-based methods, e.g., reinforcement learning methods to find a
way through a maze

83

Search-Based Methods

e Depth-first search (DFS)

= explores as far as possible along each branch before backtracking.

* Breath-first search (BFS)

= explores all cells at the present depth prior to moving on to the cells at the
next depth level.

* Dijkstra’s Algorithm: BFS + Priority

" Changes due to priority that accounts for edge costs

= Relaxation: Edit previous planned path only if new option is better
e A*: Dijkstra’s Algorithm + Heuristics

" Priority defined as cost to go + heuristic to goal

84

DFS-55x45 BFS-55x45

L = L =
.—.|_|- |_'|_|' Distance Expanded Place
. —— DFS 33 976 4
M,y My
BFS 33 210 2
Dijkstra-55x45 AStar-55x45 Diikstra | 33 218 3
AStar 33 129 4|
1% f
L L
- -
= I-| = I-'

il
il

https://www.youtube.com/watch?v=GC-nBgi9r0U

Sampling-Based Methods

Probabilistic Roadmap
- T

* Probabilistic 35 & : -
Roadmap (PRM) 2 B
= Randomly sampling =1
nodes from the S 2f
map to create a 5 -
roadmap

10 I

= Query a path using = \

a graph search = - —— ——

algorithm (e.g., A*) %0 . 10 '20 30 40 504_-.3

X [meters]

Video credit: MathWorks, https://www.youtube.com/watch?v=-fePRPyeKnc

86

https://www.youtube.com/watch?v=-fePRPyeKnc

Sampling-Based Methods

» Rapidly-exploring Random Tree (RRT)

= Search tree is built incrementally from
random nodes.

" Tree is expended with nearest neighbor
search.

* RRT*

= RRT* expands the tree in a similar way
like RRT.

= RRT* is an optimized version of RRT to
find a shortest path.

RRT*

Video credit: MathWorks

https://www.youtube.com/watch?v=-fePRPyeKnc

87

https://www.youtube.com/watch?v=-fePRPyeKnc

	Slide 1: Problems with EKFs
	Slide 2: COMPSCI-603: Robotics
	Slide 3: SLAM Overview
	Slide 4
	Slide 5: SLAM Applications
	Slide 6
	Slide 7: Definition of the SLAM Problem
	Slide 8: EKF SLAM
	Slide 9: Recall EKF
	Slide 10: EKF SLAM
	Slide 11: EKF SLAM
	Slide 12: EKF SLAM Steps
	Slide 13: EKF SLAM Overview: Initialize State
	Slide 14: EKF SLAM Overview: Predict State
	Slide 15: EKF SLAM Overview: Predict Landmark Locations
	Slide 16: EKF SLAM Overview: Obtain Measurement
	Slide 17: EKF SLAM Overview: Perform Data Association
	Slide 18: EKF SLAM Overview: Update State
	Slide 19: EKF SLAM
	Slide 20: Velocity-Based Motion Model
	Slide 21: Velocity-Based Motion Model
	Slide 22: EKF for SLAM: Predict State Using Motion
	Slide 23: EKF for SLAM: Initialize State
	Slide 24: EKF for SLAM
	Slide 25: EKF for SLAM: Update State
	Slide 26: EKF for SLAM
	Slide 27: EKF for SLAM: Update Covariance
	Slide 28: Jacobian of Motion Model
	Slide 29: Jacobian of Motion Model
	Slide 30: Jacobian of Motion Model
	Slide 31: Jacobian of Motion Model
	Slide 32: EKF for SLAM
	Slide 33: Summary of Estimation in EKF for SLAM
	Slide 34: EKF for SLAM
	Slide 35: EKF SLAM: Correction in EKF for SLAM
	Slide 36: Range-Bearing Sensor Model
	Slide 37: Range-Bearing Sensor Model
	Slide 38: Range-Bearing Sensor Model
	Slide 39: Range-Bearing Sensor Model
	Slide 40: EKF for SLAM
	Slide 41: EKF SLAM: Correction (1/2)
	Slide 42: EKF SLAM: Correction (2/2)
	Slide 43: EKF for SLAM
	Slide 44: EKF SLAM Algorithm
	Slide 45
	Slide 46
	Slide 47: Pose-Graph SLAM
	Slide 48: Pose-Graph SLAM
	Slide 49: Pose-Graph SLAM
	Slide 50
	Slide 51: Pose-Graph SLAM Example
	Slide 52: Overall SLAM System
	Slide 53: Least Squares Optimization in General
	Slide 54: Least Squares Optimization in General
	Slide 55: Least Squares Optimization in General
	Slide 56: Error Function for Least Squares Optimization
	Slide 57: Graph Representation
	Slide 58: The Graph
	Slide 59: Transformations
	Slide 60: Transformations
	Slide 61: Transformations
	Slide 62: Pose Graph Formulation
	Slide 63: Error Function
	Slide 64: Pose Graph Optimization
	Slide 65: Optimization Using the Gauss-Newton Algorithm
	Slide 66: Pose Graph with Landmarks
	Slide 67: Pose Graph with Landmarks
	Slide 68
	Slide 69
	Slide 70: Graph-Based SLAM
	Slide 71: SLAM Front-End
	Slide 72: Problem Formulation
	Slide 73: Center of Mass
	Slide 74: Orthogonal Procrustes Problem
	Slide 75: Point Alignment and Transformation
	Slide 76: Point Alignment with Unknown Correspondence
	Slide 77: Iterative Closest Point (ICP) Algorithm
	Slide 78
	Slide 79
	Slide 80: Maps from Pose-Graph SLAM
	Slide 81: Grid Occupancy Maps
	Slide 82: Grid Occupancy Map Assumptions
	Slide 83: Path Planning on Grid Occupancy Maps
	Slide 84: Search-Based Methods
	Slide 85
	Slide 86: Sampling-Based Methods
	Slide 87: Sampling-Based Methods
	Slide 88
	Slide 89: Orthogonal Procrustes Problem
	Slide 90: Orthogonal Procrustes Problem

